Nuprl Lemma : ip-extend
∀rv:InnerProductSpace. ∀a:Point. ∀b:{b:Point| a # b} . ∀c,d:Point.  (∃x:{Point| (a_b_x ∧ bx=cd)})
Proof
Definitions occuring in Statement : 
ip-between: a_b_c
, 
ip-congruent: ab=cd
, 
inner-product-space: InnerProductSpace
, 
ss-sep: x # y
, 
ss-point: Point
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:{A| B[x]}
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
sq_exists: ∃x:{A| B[x]}
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
ip-congruent: ab=cd
, 
req: x = y
, 
prop: ℙ
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
ip-extend-lemma, 
rv-norm_wf, 
rv-sub_wf, 
inner-product-space_subtype, 
ip-between_wf, 
ip-congruent_wf, 
ss-point_wf, 
set_wf, 
real-vector-space_subtype1, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
ss-sep_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
applyEquality, 
sqequalRule, 
because_Cache, 
setElimination, 
rename, 
dependent_set_memberEquality, 
productElimination, 
independent_pairFormation, 
productEquality, 
instantiate, 
independent_isectElimination, 
lambdaEquality
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a:Point.  \mforall{}b:\{b:Point|  a  \#  b\}  .  \mforall{}c,d:Point.    (\mexists{}x:\{Point|  (a\_b\_x  \mwedge{}  bx=cd)\})
Date html generated:
2017_10_05-AM-00_12_41
Last ObjectModification:
2017_03_19-PM-01_15_57
Theory : inner!product!spaces
Home
Index