Nuprl Lemma : real-vector-space_subtype1
RealVectorSpace ⊆r SeparationSpace
Proof
Definitions occuring in Statement : 
real-vector-space: RealVectorSpace
, 
separation-space: SeparationSpace
, 
subtype_rel: A ⊆r B
Definitions unfolded in proof : 
guard: {T}
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
record-select: r.x
, 
record+: record+, 
real-vector-space: RealVectorSpace
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
real-vector-space_wf, 
rmul_wf, 
int-to-real_wf, 
req_wf, 
real_wf, 
ss-eq_wf, 
all_wf, 
ss-point_wf, 
subtype_rel_self
Rules used in proof : 
natural_numberEquality, 
rename, 
setElimination, 
equalitySymmetry, 
equalityTransitivity, 
functionExtensionality, 
hypothesisEquality, 
productEquality, 
because_Cache, 
functionEquality, 
setEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
tokenEquality, 
applyEquality, 
hypothesis, 
cut, 
thin, 
dependentIntersectionEqElimination, 
sqequalRule, 
dependentIntersectionElimination, 
sqequalHypSubstitution, 
lambdaEquality, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
RealVectorSpace  \msubseteq{}r  SeparationSpace
Date html generated:
2016_11_08-AM-09_13_07
Last ObjectModification:
2016_10_31-PM-01_46_32
Theory : inner!product!spaces
Home
Index