Nuprl Lemma : real-vector-space_subtype1

RealVectorSpace ⊆SeparationSpace


Proof




Definitions occuring in Statement :  real-vector-space: RealVectorSpace separation-space: SeparationSpace subtype_rel: A ⊆B
Definitions unfolded in proof :  guard: {T} all: x:A. B[x] so_apply: x[s] prop: implies:  Q so_lambda: λ2x.t[x] and: P ∧ Q uall: [x:A]. B[x] btrue: tt ifthenelse: if then else fi  eq_atom: =a y record-select: r.x record+: record+ real-vector-space: RealVectorSpace member: t ∈ T subtype_rel: A ⊆B
Lemmas referenced :  real-vector-space_wf rmul_wf int-to-real_wf req_wf real_wf ss-eq_wf all_wf ss-point_wf subtype_rel_self
Rules used in proof :  natural_numberEquality rename setElimination equalitySymmetry equalityTransitivity functionExtensionality hypothesisEquality productEquality because_Cache functionEquality setEquality isectElimination extract_by_obid introduction tokenEquality applyEquality hypothesis cut thin dependentIntersectionEqElimination sqequalRule dependentIntersectionElimination sqequalHypSubstitution lambdaEquality sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
RealVectorSpace  \msubseteq{}r  SeparationSpace



Date html generated: 2016_11_08-AM-09_13_07
Last ObjectModification: 2016_10_31-PM-01_46_32

Theory : inner!product!spaces


Home Index