Nuprl Lemma : inner-product-space_wf

InnerProductSpace ∈ 𝕌'


Proof




Definitions occuring in Statement :  inner-product-space: InnerProductSpace member: t ∈ T universe: Type
Definitions unfolded in proof :  implies:  Q all: x:A. B[x] guard: {T} btrue: tt ifthenelse: if then else fi  eq_atom: =a y record-select: r.x record+: record+ prop: so_apply: x[s] and: P ∧ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] uall: [x:A]. B[x] member: t ∈ T inner-product-space: InnerProductSpace
Lemmas referenced :  int-to-real_wf rless_wf rv-0_wf ss-sep_wf subtype_rel_self rmul_wf rv-mul_wf radd_wf rv-add_wf req_wf all_wf real_wf real-vector-space_subtype1 ss-point_wf record+_wf real-vector-space_wf
Rules used in proof :  rename setElimination natural_numberEquality dependentIntersectionElimination tokenEquality functionExtensionality productEquality because_Cache universeEquality cumulativity applyEquality hypothesisEquality functionEquality setEquality lambdaEquality sqequalRule equalitySymmetry equalityTransitivity thin isectElimination sqequalHypSubstitution hypothesis extract_by_obid introduction cut sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
InnerProductSpace  \mmember{}  \mBbbU{}'



Date html generated: 2016_11_08-AM-09_14_34
Last ObjectModification: 2016_10_31-PM-02_28_11

Theory : inner!product!spaces


Home Index