Nuprl Lemma : inner-product-space_subtype

InnerProductSpace ⊆RealVectorSpace


Proof




Definitions occuring in Statement :  inner-product-space: InnerProductSpace real-vector-space: RealVectorSpace subtype_rel: A ⊆B
Definitions unfolded in proof :  implies:  Q prop: all: x:A. B[x] so_apply: x[s] so_lambda: λ2x.t[x] and: P ∧ Q guard: {T} uall: [x:A]. B[x] btrue: tt ifthenelse: if then else fi  eq_atom: =a y record-select: r.x record+: record+ inner-product-space: InnerProductSpace member: t ∈ T subtype_rel: A ⊆B
Lemmas referenced :  inner-product-space_wf int-to-real_wf rless_wf rv-0_wf ss-sep_wf rmul_wf rv-mul_wf radd_wf rv-add_wf req_wf all_wf real_wf real-vector-space_subtype1 ss-point_wf subtype_rel_self
Rules used in proof :  rename setElimination natural_numberEquality hypothesisEquality functionExtensionality productEquality because_Cache equalitySymmetry equalityTransitivity functionEquality setEquality isectElimination extract_by_obid introduction tokenEquality applyEquality hypothesis cut thin dependentIntersectionEqElimination sqequalRule dependentIntersectionElimination sqequalHypSubstitution lambdaEquality sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
InnerProductSpace  \msubseteq{}r  RealVectorSpace



Date html generated: 2016_11_08-AM-09_14_36
Last ObjectModification: 2016_10_31-PM-02_29_13

Theory : inner!product!spaces


Home Index