Nuprl Lemma : rv-norm_wf
∀[rv:InnerProductSpace]. ∀[x:Point].  (||x|| ∈ {r:ℝ| (r0 ≤ r) ∧ ((r * r) = x^2)} )
Proof
Definitions occuring in Statement : 
rv-norm: ||x||
, 
rv-ip: x ⋅ y
, 
inner-product-space: InnerProductSpace
, 
ss-point: Point
, 
rleq: x ≤ y
, 
req: x = y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
rv-norm: ||x||
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
separation-space_wf, 
real-vector-space_wf, 
inner-product-space_wf, 
subtype_rel_transitivity, 
inner-product-space_subtype, 
real-vector-space_subtype1, 
ss-point_wf, 
int-to-real_wf, 
rleq_wf, 
rv-ip_wf, 
rv-ip-nonneg, 
rsqrt_wf
Rules used in proof : 
because_Cache, 
isect_memberEquality, 
independent_isectElimination, 
instantiate, 
applyEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
natural_numberEquality, 
dependent_set_memberEquality, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[x:Point].    (||x||  \mmember{}  \{r:\mBbbR{}|  (r0  \mleq{}  r)  \mwedge{}  ((r  *  r)  =  x\^{}2)\}  )
Date html generated:
2016_11_08-AM-09_16_05
Last ObjectModification:
2016_10_31-PM-04_37_09
Theory : inner!product!spaces
Home
Index