Nuprl Lemma : rv-norm_wf

[rv:InnerProductSpace]. ∀[x:Point].  (||x|| ∈ {r:ℝ(r0 ≤ r) ∧ ((r r) x^2)} )


Proof




Definitions occuring in Statement :  rv-norm: ||x|| rv-ip: x ⋅ y inner-product-space: InnerProductSpace ss-point: Point rleq: x ≤ y req: y rmul: b int-to-real: r(n) real: uall: [x:A]. B[x] and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  uimplies: supposing a guard: {T} subtype_rel: A ⊆B prop: rv-norm: ||x|| member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  separation-space_wf real-vector-space_wf inner-product-space_wf subtype_rel_transitivity inner-product-space_subtype real-vector-space_subtype1 ss-point_wf int-to-real_wf rleq_wf rv-ip_wf rv-ip-nonneg rsqrt_wf
Rules used in proof :  because_Cache isect_memberEquality independent_isectElimination instantiate applyEquality equalitySymmetry equalityTransitivity axiomEquality natural_numberEquality dependent_set_memberEquality hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[x:Point].    (||x||  \mmember{}  \{r:\mBbbR{}|  (r0  \mleq{}  r)  \mwedge{}  ((r  *  r)  =  x\^{}2)\}  )



Date html generated: 2016_11_08-AM-09_16_05
Last ObjectModification: 2016_10_31-PM-04_37_09

Theory : inner!product!spaces


Home Index