Nuprl Lemma : rv-ip-nonneg
∀[rv:InnerProductSpace]. ∀[x:Point(rv)].  (r0 ≤ x^2)
Proof
Definitions occuring in Statement : 
rv-ip: x ⋅ y
, 
inner-product-space: InnerProductSpace
, 
rleq: x ≤ y
, 
int-to-real: r(n)
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
prop: ℙ
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
rnonneg: rnonneg(x)
, 
rleq: x ≤ y
, 
uimplies: b supposing a
, 
stable: Stable{P}
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
ss-eq: Error :ss-eq, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
istype-void, 
rleq_wf, 
not_wf, 
rv-0_wf, 
Error :ss-sep_wf, 
false_wf, 
Error :separation-space_wf, 
real-vector-space_wf, 
inner-product-space_wf, 
subtype_rel_transitivity, 
inner-product-space_subtype, 
real-vector-space_subtype1, 
Error :ss-point_wf, 
le_witness_for_triv, 
rv-ip_wf, 
int-to-real_wf, 
stable__rleq, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle, 
rleq_weakening_rless, 
rv-ip-positive, 
rleq_weakening_equal, 
uiff_transitivity, 
rleq_functionality, 
req_weakening, 
rv-ip_functionality, 
rv-ip0
Rules used in proof : 
unionIsType, 
functionIsType, 
voidElimination, 
independent_functionElimination, 
lambdaFormation_alt, 
functionEquality, 
because_Cache, 
unionEquality, 
isectIsTypeImplies, 
isect_memberEquality_alt, 
instantiate, 
applyEquality, 
universeIsType, 
inhabitedIsType, 
functionIsTypeImplies, 
equalitySymmetry, 
equalityTransitivity, 
productElimination, 
dependent_functionElimination, 
lambdaEquality_alt, 
sqequalRule, 
independent_isectElimination, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
unionElimination
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[x:Point(rv)].    (r0  \mleq{}  x\^{}2)
Date html generated:
2020_05_20-PM-01_11_07
Last ObjectModification:
2019_12_28-AM-10_59_03
Theory : inner!product!spaces
Home
Index