Nuprl Lemma : rv-ip-nonneg

[rv:InnerProductSpace]. ∀[x:Point(rv)].  (r0 ≤ x^2)


Proof




Definitions occuring in Statement :  rv-ip: x ⋅ y inner-product-space: InnerProductSpace rleq: x ≤ y int-to-real: r(n) uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  false: False not: ¬A implies:  Q or: P ∨ Q prop: guard: {T} subtype_rel: A ⊆B and: P ∧ Q le: A ≤ B all: x:A. B[x] rnonneg: rnonneg(x) rleq: x ≤ y uimplies: supposing a stable: Stable{P} member: t ∈ T uall: [x:A]. B[x] iff: ⇐⇒ Q ss-eq: Error :ss-eq,  uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  istype-void rleq_wf not_wf rv-0_wf Error :ss-sep_wf,  false_wf Error :separation-space_wf,  real-vector-space_wf inner-product-space_wf subtype_rel_transitivity inner-product-space_subtype real-vector-space_subtype1 Error :ss-point_wf,  le_witness_for_triv rv-ip_wf int-to-real_wf stable__rleq minimal-double-negation-hyp-elim minimal-not-not-excluded-middle rleq_weakening_rless rv-ip-positive rleq_weakening_equal uiff_transitivity rleq_functionality req_weakening rv-ip_functionality rv-ip0
Rules used in proof :  unionIsType functionIsType voidElimination independent_functionElimination lambdaFormation_alt functionEquality because_Cache unionEquality isectIsTypeImplies isect_memberEquality_alt instantiate applyEquality universeIsType inhabitedIsType functionIsTypeImplies equalitySymmetry equalityTransitivity productElimination dependent_functionElimination lambdaEquality_alt sqequalRule independent_isectElimination hypothesisEquality hypothesis natural_numberEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution unionElimination

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[x:Point(rv)].    (r0  \mleq{}  x\^{}2)



Date html generated: 2020_05_20-PM-01_11_07
Last ObjectModification: 2019_12_28-AM-10_59_03

Theory : inner!product!spaces


Home Index