Nuprl Lemma : stable__rleq
∀[x,y:ℝ].  Stable{x ≤ y}
Proof
Definitions occuring in Statement : 
rleq: x ≤ y, 
real: ℝ, 
stable: Stable{P}, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
stable: Stable{P}, 
uimplies: b supposing a, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
real: ℝ, 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
prop: ℙ, 
false: False, 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
le: A ≤ B, 
subtype_rel: A ⊆r B
Lemmas referenced : 
rleq-iff4, 
decidable__le, 
rleq_wf, 
nat_plus_wf, 
not_wf, 
less_than'_wf, 
rsub_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_functionElimination, 
lambdaFormation, 
dependent_functionElimination, 
applyEquality, 
setElimination, 
rename, 
addEquality, 
natural_numberEquality, 
unionElimination, 
voidElimination, 
sqequalRule, 
lambdaEquality, 
independent_pairEquality, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
minusEquality
Latex:
\mforall{}[x,y:\mBbbR{}].    Stable\{x  \mleq{}  y\}
Date html generated:
2016_10_26-AM-09_06_33
Last ObjectModification:
2016_09_26-PM-00_35_12
Theory : reals
Home
Index