Nuprl Lemma : rv-ip0

[rv:InnerProductSpace]. ∀[x:Point].  (x ⋅ r0)


Proof




Definitions occuring in Statement :  rv-ip: x ⋅ y inner-product-space: InnerProductSpace rv-0: 0 ss-point: Point req: y int-to-real: r(n) uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  rev_uimplies: rev_uimplies(P;Q) and: P ∧ Q uiff: uiff(P;Q) all: x:A. B[x] uimplies: supposing a guard: {T} implies:  Q subtype_rel: A ⊆B member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rmul-one-both rmul-zero-both radd-int rmul_functionality rmul-distrib2 rmul-identity1 rminus-as-rmul radd_functionality req_transitivity uiff_transitivity req_inversion rmul_wf req_wf rminus_wf radd-preserves-req rv-ip-add2 req_weakening ss-eq_inversion ss-eq_weakening rv-ip_functionality req_functionality radd_comm radd_wf rv-add_wf separation-space_wf real-vector-space_wf inner-product-space_wf subtype_rel_transitivity real-vector-space_subtype1 ss-point_wf int-to-real_wf rv-ip_wf req_witness rv-0_wf inner-product-space_subtype rv-add-0
Rules used in proof :  addEquality minusEquality productElimination dependent_functionElimination isect_memberEquality independent_isectElimination instantiate independent_functionElimination natural_numberEquality because_Cache sqequalRule hypothesis applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[x:Point].    (x  \mcdot{}  0  =  r0)



Date html generated: 2016_11_08-AM-09_15_05
Last ObjectModification: 2016_10_31-PM-03_03_53

Theory : inner!product!spaces


Home Index