Nuprl Lemma : rv-add-0

[rv:RealVectorSpace]. ∀[x:Point].  x ≡ x


Proof




Definitions occuring in Statement :  rv-add: y rv-0: 0 real-vector-space: RealVectorSpace ss-eq: x ≡ y ss-point: Point uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ss-eq: x ≡ y not: ¬A implies:  Q false: False subtype_rel: A ⊆B prop: all: x:A. B[x] uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  ss-sep_wf real-vector-space_subtype1 rv-add_wf rv-0_wf ss-point_wf real-vector-space_wf rv-mul_wf int-to-real_wf radd_wf ss-eq_weakening ss-eq_functionality rv-mul-add rv-mul_functionality radd-int rv-add_functionality rv-mul0 rv-mul1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality because_Cache extract_by_obid isectElimination applyEquality hypothesis isect_memberEquality voidElimination natural_numberEquality addEquality independent_functionElimination independent_isectElimination productElimination

Latex:
\mforall{}[rv:RealVectorSpace].  \mforall{}[x:Point].    0  +  x  \mequiv{}  x



Date html generated: 2017_10_04-PM-11_50_38
Last ObjectModification: 2017_07_28-AM-08_53_48

Theory : inner!product!spaces


Home Index