Nuprl Lemma : rv-mul_functionality

[rv:RealVectorSpace]. ∀[a,b:ℝ]. ∀[x,x':Point].  (a*x ≡ b*x') supposing (x ≡ x' and (a b))


Proof




Definitions occuring in Statement :  rv-mul: a*x real-vector-space: RealVectorSpace ss-eq: x ≡ y ss-point: Point req: y real: uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  guard: {T} rneq: x ≠ y false: False prop: or: P ∨ Q subtype_rel: A ⊆B all: x:A. B[x] implies:  Q not: ¬A ss-eq: x ≡ y uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  req_inversion rless_irreflexivity rleq_weakening rless_transitivity1 real-vector-space_wf real_wf ss-point_wf req_wf ss-eq_wf ss-sep_wf rv-mul-sep1 rv-mul-sep2 rv-mul_wf real-vector-space_subtype1 ss-sep-or
Rules used in proof :  independent_isectElimination voidElimination equalitySymmetry equalityTransitivity isect_memberEquality lambdaEquality because_Cache unionElimination independent_functionElimination isectElimination sqequalRule hypothesis applyEquality hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid lambdaFormation cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[rv:RealVectorSpace].  \mforall{}[a,b:\mBbbR{}].  \mforall{}[x,x':Point].    (a*x  \mequiv{}  b*x')  supposing  (x  \mequiv{}  x'  and  (a  =  b))



Date html generated: 2016_11_08-AM-09_13_54
Last ObjectModification: 2016_10_31-PM-06_27_24

Theory : inner!product!spaces


Home Index