Nuprl Lemma : rv-mul-sep1
∀rv:RealVectorSpace. ∀a,b:ℝ. ∀y:Point.  (a*y # b*y 
⇒ a ≠ b)
Proof
Definitions occuring in Statement : 
rv-mul: a*x
, 
real-vector-space: RealVectorSpace
, 
rneq: x ≠ y
, 
real: ℝ
, 
ss-sep: x # y
, 
ss-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
or: P ∨ Q
, 
not: ¬A
, 
false: False
Lemmas referenced : 
rv-mul-sep, 
ss-sep_wf, 
real-vector-space_subtype1, 
rv-mul_wf, 
ss-point_wf, 
real_wf, 
real-vector-space_wf, 
ss-sep-irrefl
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
applyEquality, 
sqequalRule, 
because_Cache, 
unionElimination, 
independent_functionElimination, 
voidElimination
Latex:
\mforall{}rv:RealVectorSpace.  \mforall{}a,b:\mBbbR{}.  \mforall{}y:Point.    (a*y  \#  b*y  {}\mRightarrow{}  a  \mneq{}  b)
Date html generated:
2017_10_04-PM-11_50_22
Last ObjectModification:
2017_08_10-PM-03_38_14
Theory : inner!product!spaces
Home
Index