Nuprl Lemma : rv-mul-sep
∀rv:RealVectorSpace. ∀a,b:ℝ. ∀x,y:Point.  (a*x # b*y 
⇒ (a ≠ b ∨ x # y))
Proof
Definitions occuring in Statement : 
rv-mul: a*x
, 
real-vector-space: RealVectorSpace
, 
ss-sep: x # y
, 
ss-point: Point
, 
rneq: x ≠ y
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
Definitions unfolded in proof : 
rv-mul: a*x
, 
or: P ∨ Q
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
subtype_rel: A ⊆r B
, 
record-select: r.x
, 
record+: record+, 
real-vector-space: RealVectorSpace
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
real-vector-space_wf, 
rneq_wf, 
radd_wf, 
rmul_wf, 
int-to-real_wf, 
real_wf, 
or_wf, 
ss-sep_wf, 
ss-eq_wf, 
all_wf, 
ss-point_wf, 
subtype_rel_self
Rules used in proof : 
natural_numberEquality, 
rename, 
setElimination, 
equalitySymmetry, 
equalityTransitivity, 
hypothesisEquality, 
functionExtensionality, 
lambdaEquality, 
productEquality, 
because_Cache, 
functionEquality, 
setEquality, 
isectElimination, 
extract_by_obid, 
tokenEquality, 
applyEquality, 
hypothesis, 
cut, 
thin, 
dependentIntersectionEqElimination, 
sqequalRule, 
dependentIntersectionElimination, 
sqequalHypSubstitution, 
introduction, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}rv:RealVectorSpace.  \mforall{}a,b:\mBbbR{}.  \mforall{}x,y:Point.    (a*x  \#  b*y  {}\mRightarrow{}  (a  \mneq{}  b  \mvee{}  x  \#  y))
Date html generated:
2016_11_08-AM-09_13_40
Last ObjectModification:
2016_11_02-PM-00_46_01
Theory : inner!product!spaces
Home
Index