Nuprl Lemma : rv-mul0

[rv:RealVectorSpace]. ∀[x:Point].  r0*x ≡ 0


Proof




Definitions occuring in Statement :  rv-mul: a*x rv-0: 0 real-vector-space: RealVectorSpace ss-eq: x ≡ y ss-point: Point int-to-real: r(n) uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  false: False not: ¬A ss-eq: x ≡ y sq_stable: SqStable(P) squash: T rv-mul: a*x rv-0: 0 guard: {T} implies:  Q prop: all: x:A. B[x] so_apply: x[s] so_lambda: λ2x.t[x] and: P ∧ Q btrue: tt ifthenelse: if then else fi  eq_atom: =a y subtype_rel: A ⊆B record-select: r.x record+: record+ real-vector-space: RealVectorSpace member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  real-vector-space_wf rv-0_wf rv-mul_wf real-vector-space_subtype1 sq_stable__ss-eq rneq_wf radd_wf rmul_wf int-to-real_wf real_wf ss-sep_wf ss-eq_wf all_wf ss-point_wf subtype_rel_self
Rules used in proof :  voidElimination isect_memberEquality dependent_functionElimination productElimination independent_functionElimination imageElimination baseClosed imageMemberEquality Error :applyLambdaEquality,  natural_numberEquality rename setElimination equalitySymmetry equalityTransitivity hypothesisEquality functionExtensionality lambdaEquality productEquality because_Cache functionEquality setEquality isectElimination extract_by_obid tokenEquality applyEquality hypothesis thin dependentIntersectionEqElimination sqequalRule dependentIntersectionElimination sqequalHypSubstitution cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[rv:RealVectorSpace].  \mforall{}[x:Point].    r0*x  \mequiv{}  0



Date html generated: 2016_11_08-AM-09_13_51
Last ObjectModification: 2016_10_31-PM-06_09_44

Theory : inner!product!spaces


Home Index