Nuprl Lemma : rv-mul-add

[rv:RealVectorSpace]. ∀[a,b:ℝ]. ∀[x:Point].  a*x b*x ≡ b*x


Proof




Definitions occuring in Statement :  rv-mul: a*x rv-add: y real-vector-space: RealVectorSpace radd: b real: ss-eq: x ≡ y ss-point: Point uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] subtype_rel: A ⊆B implies:  Q ss-eq: x ≡ y not: ¬A false: False prop: real-vector-space: RealVectorSpace record+: record+ record-select: r.x eq_atom: =a y ifthenelse: if then else fi  btrue: tt and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} or: P ∨ Q rv-mul: a*x rv-add: y squash: T sq_stable: SqStable(P)
Lemmas referenced :  ss-eq_inversion real-vector-space_subtype1 rv-mul_wf radd_wf rv-add_wf ss-sep_wf ss-point_wf real_wf real-vector-space_wf subtype_rel_self all_wf ss-eq_wf or_wf int-to-real_wf rmul_wf rneq_wf sq_stable__ss-eq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality applyEquality hypothesis sqequalRule isectElimination independent_functionElimination lambdaEquality because_Cache isect_memberEquality voidElimination dependentIntersectionElimination dependentIntersectionEqElimination tokenEquality setEquality functionEquality productEquality functionExtensionality equalityTransitivity equalitySymmetry setElimination rename natural_numberEquality applyLambdaEquality imageMemberEquality baseClosed imageElimination productElimination

Latex:
\mforall{}[rv:RealVectorSpace].  \mforall{}[a,b:\mBbbR{}].  \mforall{}[x:Point].    a*x  +  b*x  \mequiv{}  a  +  b*x



Date html generated: 2017_10_04-PM-11_50_23
Last ObjectModification: 2017_06_22-PM-06_44_29

Theory : inner!product!spaces


Home Index