Nuprl Lemma : rv-ip_wf

[rv:InnerProductSpace]. ∀[x,y:Point].  (x ⋅ y ∈ ℝ)


Proof




Definitions occuring in Statement :  rv-ip: x ⋅ y inner-product-space: InnerProductSpace ss-point: Point real: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uimplies: supposing a implies:  Q prop: all: x:A. B[x] so_apply: x[s] so_lambda: λ2x.t[x] and: P ∧ Q guard: {T} btrue: tt ifthenelse: if then else fi  eq_atom: =a y record-select: r.x record+: record+ inner-product-space: InnerProductSpace rv-ip: x ⋅ y subtype_rel: A ⊆B member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  separation-space_wf real-vector-space_wf inner-product-space_wf subtype_rel_transitivity int-to-real_wf rless_wf rv-0_wf ss-sep_wf rmul_wf rv-mul_wf radd_wf rv-add_wf req_wf all_wf real_wf real-vector-space_subtype1 ss-point_wf subtype_rel_self inner-product-space_subtype
Rules used in proof :  isect_memberEquality independent_isectElimination instantiate axiomEquality rename setElimination natural_numberEquality functionExtensionality lambdaEquality productEquality because_Cache equalitySymmetry equalityTransitivity functionEquality setEquality isectElimination tokenEquality thin dependentIntersectionEqElimination dependentIntersectionElimination sqequalRule sqequalHypSubstitution hypothesis extract_by_obid applyEquality hypothesisEquality cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[x,y:Point].    (x  \mcdot{}  y  \mmember{}  \mBbbR{})



Date html generated: 2016_11_08-AM-09_14_41
Last ObjectModification: 2016_10_31-PM-02_34_37

Theory : inner!product!spaces


Home Index