Nuprl Lemma : rv-ip-positive
∀rv:InnerProductSpace. ∀x:Point.  (x # 0 
⇐⇒ r0 < x^2)
Proof
Definitions occuring in Statement : 
rv-ip: x ⋅ y
, 
inner-product-space: InnerProductSpace
, 
rv-0: 0
, 
ss-sep: x # y
, 
ss-point: Point
, 
rless: x < y
, 
int-to-real: r(n)
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
rv-ip: x ⋅ y
, 
exists: ∃x:A. B[x]
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
so_apply: x[s]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
subtype_rel: A ⊆r B
, 
record-select: r.x
, 
record+: record+, 
inner-product-space: InnerProductSpace
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
inner-product-space_wf, 
exists_wf, 
int-to-real_wf, 
rless_wf, 
rv-0_wf, 
ss-sep_wf, 
iff_wf, 
rmul_wf, 
rv-mul_wf, 
radd_wf, 
rv-add_wf, 
req_wf, 
ss-eq_wf, 
all_wf, 
real_wf, 
real-vector-space_subtype1, 
ss-point_wf, 
subtype_rel_self
Rules used in proof : 
rename, 
setElimination, 
natural_numberEquality, 
functionExtensionality, 
lambdaEquality, 
productEquality, 
because_Cache, 
equalitySymmetry, 
equalityTransitivity, 
functionEquality, 
setEquality, 
isectElimination, 
extract_by_obid, 
tokenEquality, 
applyEquality, 
hypothesis, 
thin, 
dependentIntersectionEqElimination, 
sqequalRule, 
dependentIntersectionElimination, 
sqequalHypSubstitution, 
introduction, 
hypothesisEquality, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}x:Point.    (x  \#  0  \mLeftarrow{}{}\mRightarrow{}  r0  <  x\^{}2)
Date html generated:
2016_11_08-AM-09_15_01
Last ObjectModification:
2016_11_02-PM-03_13_47
Theory : inner!product!spaces
Home
Index