Nuprl Lemma : rv-ip-positive

rv:InnerProductSpace. ∀x:Point.  (x ⇐⇒ r0 < x^2)


Proof




Definitions occuring in Statement :  rv-ip: x ⋅ y inner-product-space: InnerProductSpace rv-0: 0 ss-sep: y ss-point: Point rless: x < y int-to-real: r(n) all: x:A. B[x] iff: ⇐⇒ Q natural_number: $n
Definitions unfolded in proof :  rv-ip: x ⋅ y exists: x:A. B[x] rev_implies:  Q iff: ⇐⇒ Q so_apply: x[s] prop: implies:  Q so_lambda: λ2x.t[x] and: P ∧ Q guard: {T} uall: [x:A]. B[x] btrue: tt ifthenelse: if then else fi  eq_atom: =a y subtype_rel: A ⊆B record-select: r.x record+: record+ inner-product-space: InnerProductSpace member: t ∈ T all: x:A. B[x]
Lemmas referenced :  inner-product-space_wf exists_wf int-to-real_wf rless_wf rv-0_wf ss-sep_wf iff_wf rmul_wf rv-mul_wf radd_wf rv-add_wf req_wf ss-eq_wf all_wf real_wf real-vector-space_subtype1 ss-point_wf subtype_rel_self
Rules used in proof :  rename setElimination natural_numberEquality functionExtensionality lambdaEquality productEquality because_Cache equalitySymmetry equalityTransitivity functionEquality setEquality isectElimination extract_by_obid tokenEquality applyEquality hypothesis thin dependentIntersectionEqElimination sqequalRule dependentIntersectionElimination sqequalHypSubstitution introduction hypothesisEquality cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}x:Point.    (x  \#  0  \mLeftarrow{}{}\mRightarrow{}  r0  <  x\^{}2)



Date html generated: 2016_11_08-AM-09_15_01
Last ObjectModification: 2016_11_02-PM-03_13_47

Theory : inner!product!spaces


Home Index