Nuprl Lemma : ip-extend-lemma
∀rv:InnerProductSpace. ∀a:Point(rv). ∀b:{b:Point(rv)| a # b} . ∀dcd:{d:ℝ| r0 ≤ d} .
  (∃x:Point(rv) [(a_b_x ∧ (||b - x|| = dcd))])
Proof
Definitions occuring in Statement : 
ip-between: a_b_c
, 
rv-norm: ||x||
, 
rv-sub: x - y
, 
inner-product-space: InnerProductSpace
, 
rleq: x ≤ y
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
sq_exists: ∃x:A [B[x]]
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
cand: A c∧ B
, 
rdiv: (x/y)
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
top: Top
, 
rge: x ≥ y
, 
exists: ∃x:A. B[x]
, 
true: True
Lemmas referenced : 
rv-sep-iff-norm, 
sq_stable__rv-sep-ext, 
sq_stable__rleq, 
int-to-real_wf, 
real_wf, 
rleq_wf, 
Error :ss-sep_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
Error :separation-space_wf, 
Error :ss-point_wf, 
rv-add_wf, 
rv-mul_wf, 
rdiv_wf, 
radd_wf, 
rv-norm_wf, 
rv-sub_wf, 
rless_wf, 
rminus_wf, 
rmul_preserves_req, 
rsub_wf, 
ip-between_wf, 
req_wf, 
rmul_wf, 
rinv_wf2, 
itermSubtract_wf, 
itermMultiply_wf, 
itermMinus_wf, 
itermVar_wf, 
itermConstant_wf, 
itermAdd_wf, 
req-same, 
req_functionality, 
req_transitivity, 
rminus_functionality, 
rmul-rinv3, 
radd_functionality, 
rmul_functionality, 
req_weakening, 
rmul-rinv, 
req-iff-rsub-is-0, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_minus_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
real_term_value_add_lemma, 
ip-between_functionality, 
Error :ss-eq_weakening, 
rv-add_functionality, 
rv-mul_functionality, 
iff_weakening_uiff, 
rv-norm_functionality, 
rv-sub_functionality, 
Error :ss-eq_wf, 
ip-between-iff2, 
Error :ss-eq_functionality, 
req_inversion, 
rv-mul-cancel, 
trivial-rless-radd, 
rmul_preserves_rless, 
rless_functionality, 
istype-void, 
rless_functionality_wrt_implies, 
rleq_weakening_equal, 
radd_functionality_wrt_rleq, 
rv-add-cancel-left, 
uiff_transitivity, 
rv-mul-add-1, 
rv-add-assoc, 
rv-add-swap, 
rv-mul-add, 
rv-0_wf, 
rv-mul0, 
rv-add-0, 
Error :ss-eq_inversion, 
Error :ss-eq_transitivity, 
rinv-mul-as-rdiv, 
rv-mul1, 
rccint_wf, 
i-member_wf, 
rv-norm-nonneg, 
trivial-rleq-radd, 
rmul_preserves_rleq, 
member_rccint_lemma, 
rleq_functionality, 
rv-mul-linear, 
rv-mul-mul, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
rabs_wf, 
rv-norm-difference-symmetry, 
ip-dist-between-1, 
rabs-rminus, 
rabs-of-nonneg
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
setElimination, 
rename, 
hypothesis, 
productElimination, 
independent_functionElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
isectElimination, 
natural_numberEquality, 
setIsType, 
universeIsType, 
inhabitedIsType, 
applyEquality, 
instantiate, 
independent_isectElimination, 
dependent_set_memberFormation_alt, 
inrFormation_alt, 
productIsType, 
lambdaEquality_alt, 
equalityTransitivity, 
equalitySymmetry, 
closedConclusion, 
independent_pairFormation, 
approximateComputation, 
int_eqEquality, 
Error :memTop, 
promote_hyp, 
equalityIstype, 
isect_memberEquality_alt, 
voidElimination, 
dependent_pairFormation_alt, 
universeEquality
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a:Point(rv).  \mforall{}b:\{b:Point(rv)|  a  \#  b\}  .  \mforall{}dcd:\{d:\mBbbR{}|  r0  \mleq{}  d\}  .
    (\mexists{}x:Point(rv)  [(a\_b\_x  \mwedge{}  (||b  -  x||  =  dcd))])
Date html generated:
2020_05_20-PM-01_15_22
Last ObjectModification:
2020_01_03-PM-07_33_49
Theory : inner!product!spaces
Home
Index