Nuprl Lemma : ip-extend-lemma

rv:InnerProductSpace. ∀a:Point(rv). ∀b:{b:Point(rv)| b} . ∀dcd:{d:ℝr0 ≤ d} .
  (∃x:Point(rv) [(a_b_x ∧ (||b x|| dcd))])


Proof




Definitions occuring in Statement :  ip-between: a_b_c rv-norm: ||x|| rv-sub: y inner-product-space: InnerProductSpace rleq: x ≤ y req: y int-to-real: r(n) real: all: x:A. B[x] sq_exists: x:A [B[x]] and: P ∧ Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q sq_stable: SqStable(P) squash: T uall: [x:A]. B[x] prop: subtype_rel: A ⊆B guard: {T} uimplies: supposing a sq_exists: x:A [B[x]] rneq: x ≠ y or: P ∨ Q uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) cand: c∧ B rdiv: (x/y) req_int_terms: t1 ≡ t2 false: False not: ¬A rev_implies:  Q top: Top rge: x ≥ y exists: x:A. B[x] true: True
Lemmas referenced :  rv-sep-iff-norm sq_stable__rv-sep-ext sq_stable__rleq int-to-real_wf real_wf rleq_wf Error :ss-sep_wf,  real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf Error :separation-space_wf,  Error :ss-point_wf,  rv-add_wf rv-mul_wf rdiv_wf radd_wf rv-norm_wf rv-sub_wf rless_wf rminus_wf rmul_preserves_req rsub_wf ip-between_wf req_wf rmul_wf rinv_wf2 itermSubtract_wf itermMultiply_wf itermMinus_wf itermVar_wf itermConstant_wf itermAdd_wf req-same req_functionality req_transitivity rminus_functionality rmul-rinv3 radd_functionality rmul_functionality req_weakening rmul-rinv req-iff-rsub-is-0 real_polynomial_null istype-int real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_minus_lemma real_term_value_var_lemma real_term_value_const_lemma real_term_value_add_lemma ip-between_functionality Error :ss-eq_weakening,  rv-add_functionality rv-mul_functionality iff_weakening_uiff rv-norm_functionality rv-sub_functionality Error :ss-eq_wf,  ip-between-iff2 Error :ss-eq_functionality,  req_inversion rv-mul-cancel trivial-rless-radd rmul_preserves_rless rless_functionality istype-void rless_functionality_wrt_implies rleq_weakening_equal radd_functionality_wrt_rleq rv-add-cancel-left uiff_transitivity rv-mul-add-1 rv-add-assoc rv-add-swap rv-mul-add rv-0_wf rv-mul0 rv-add-0 Error :ss-eq_inversion,  Error :ss-eq_transitivity,  rinv-mul-as-rdiv rv-mul1 rccint_wf i-member_wf rv-norm-nonneg trivial-rleq-radd rmul_preserves_rleq member_rccint_lemma rleq_functionality rv-mul-linear rv-mul-mul squash_wf true_wf subtype_rel_self iff_weakening_equal rabs_wf rv-norm-difference-symmetry ip-dist-between-1 rabs-rminus rabs-of-nonneg
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin because_Cache hypothesisEquality setElimination rename hypothesis productElimination independent_functionElimination sqequalRule imageMemberEquality baseClosed imageElimination isectElimination natural_numberEquality setIsType universeIsType inhabitedIsType applyEquality instantiate independent_isectElimination dependent_set_memberFormation_alt inrFormation_alt productIsType lambdaEquality_alt equalityTransitivity equalitySymmetry closedConclusion independent_pairFormation approximateComputation int_eqEquality Error :memTop,  promote_hyp equalityIstype isect_memberEquality_alt voidElimination dependent_pairFormation_alt universeEquality

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a:Point(rv).  \mforall{}b:\{b:Point(rv)|  a  \#  b\}  .  \mforall{}dcd:\{d:\mBbbR{}|  r0  \mleq{}  d\}  .
    (\mexists{}x:Point(rv)  [(a\_b\_x  \mwedge{}  (||b  -  x||  =  dcd))])



Date html generated: 2020_05_20-PM-01_15_22
Last ObjectModification: 2020_01_03-PM-07_33_49

Theory : inner!product!spaces


Home Index