Nuprl Lemma : radd_functionality_wrt_rleq

[x,y,z,t:ℝ].  ((x y) ≤ (z t)) supposing ((y ≤ t) and (x ≤ z))


Proof




Definitions occuring in Statement :  rleq: x ≤ y radd: b real: uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  rleq: x ≤ y uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q rnonneg: rnonneg(x) le: A ≤ B and: P ∧ Q not: ¬A false: False subtype_rel: A ⊆B real: prop: itermConstant: "const" req_int_terms: t1 ≡ t2 top: Top uiff: uiff(P;Q) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  rnonneg-radd rsub_wf less_than'_wf radd_wf real_wf nat_plus_wf rnonneg_wf rminus_wf rnonneg_functionality req_transitivity real_term_polynomial itermSubtract_wf itermAdd_wf itermVar_wf itermMinus_wf int-to-real_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_add_lemma real_term_value_var_lemma real_term_value_minus_lemma req-iff-rsub-is-0 radd_functionality req_weakening
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality hypothesis independent_functionElimination lambdaEquality productElimination independent_pairEquality because_Cache applyEquality setElimination rename minusEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality voidElimination independent_isectElimination computeAll int_eqEquality intEquality voidEquality

Latex:
\mforall{}[x,y,z,t:\mBbbR{}].    ((x  +  y)  \mleq{}  (z  +  t))  supposing  ((y  \mleq{}  t)  and  (x  \mleq{}  z))



Date html generated: 2017_10_03-AM-08_25_09
Last ObjectModification: 2017_07_28-AM-07_23_43

Theory : reals


Home Index