Nuprl Lemma : rv-mul-cancel
∀[rv:RealVectorSpace]. ∀[a:ℝ]. ∀[x,y:Point].  uiff(a*x ≡ a*y;x ≡ y) supposing a ≠ r0
Proof
Definitions occuring in Statement : 
rv-mul: a*x
, 
real-vector-space: RealVectorSpace
, 
rneq: x ≠ y
, 
int-to-real: r(n)
, 
real: ℝ
, 
ss-eq: x ≡ y
, 
ss-point: Point
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ss-eq: x ≡ y
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
ss-sep_wf, 
real-vector-space_subtype1, 
ss-eq_wf, 
rv-mul_wf, 
rneq_wf, 
int-to-real_wf, 
ss-point_wf, 
real_wf, 
real-vector-space_wf, 
rdiv_wf, 
req_weakening, 
rv-mul_functionality, 
rmul_wf, 
ss-eq_functionality, 
rv-mul-mul, 
rmul-rdiv-cancel2, 
ss-eq_weakening, 
rv-mul1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
extract_by_obid, 
isectElimination, 
applyEquality, 
hypothesis, 
voidElimination, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination
Latex:
\mforall{}[rv:RealVectorSpace].  \mforall{}[a:\mBbbR{}].  \mforall{}[x,y:Point].    uiff(a*x  \mequiv{}  a*y;x  \mequiv{}  y)  supposing  a  \mneq{}  r0
Date html generated:
2017_10_04-PM-11_50_41
Last ObjectModification:
2017_06_22-PM-06_44_45
Theory : inner!product!spaces
Home
Index