Nuprl Lemma : rv-mul-cancel

[rv:RealVectorSpace]. ∀[a:ℝ]. ∀[x,y:Point].  uiff(a*x ≡ a*y;x ≡ y) supposing a ≠ r0


Proof




Definitions occuring in Statement :  rv-mul: a*x real-vector-space: RealVectorSpace rneq: x ≠ y int-to-real: r(n) real: ss-eq: x ≡ y ss-point: Point uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q ss-eq: x ≡ y not: ¬A implies:  Q false: False subtype_rel: A ⊆B prop: all: x:A. B[x] rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  ss-sep_wf real-vector-space_subtype1 ss-eq_wf rv-mul_wf rneq_wf int-to-real_wf ss-point_wf real_wf real-vector-space_wf rdiv_wf req_weakening rv-mul_functionality rmul_wf ss-eq_functionality rv-mul-mul rmul-rdiv-cancel2 ss-eq_weakening rv-mul1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality because_Cache extract_by_obid isectElimination applyEquality hypothesis voidElimination productElimination independent_pairEquality isect_memberEquality equalityTransitivity equalitySymmetry natural_numberEquality independent_isectElimination independent_functionElimination

Latex:
\mforall{}[rv:RealVectorSpace].  \mforall{}[a:\mBbbR{}].  \mforall{}[x,y:Point].    uiff(a*x  \mequiv{}  a*y;x  \mequiv{}  y)  supposing  a  \mneq{}  r0



Date html generated: 2017_10_04-PM-11_50_41
Last ObjectModification: 2017_06_22-PM-06_44_45

Theory : inner!product!spaces


Home Index