Nuprl Lemma : rmul_preserves_req
∀[x,y,z:ℝ].  uiff(x = z;(x * y) = (z * y)) supposing y ≠ r0
Proof
Definitions occuring in Statement : 
rneq: x ≠ y
, 
req: x = y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
rdiv: (x/y)
, 
all: ∀x:A. B[x]
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
not: ¬A
, 
top: Top
Lemmas referenced : 
req_functionality, 
rmul_wf, 
rmul_functionality, 
req_weakening, 
req_witness, 
req_wf, 
rneq_wf, 
int-to-real_wf, 
real_wf, 
rdiv_wf, 
rinv_wf2, 
itermSubtract_wf, 
itermMultiply_wf, 
itermVar_wf, 
itermConstant_wf, 
req_transitivity, 
rmul-rinv, 
rmul-rinv3, 
req-iff-rsub-is-0, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
istype-void, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
universeIsType, 
sqequalRule, 
independent_pairEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
natural_numberEquality, 
dependent_functionElimination, 
approximateComputation, 
lambdaEquality_alt, 
int_eqEquality, 
voidElimination
Latex:
\mforall{}[x,y,z:\mBbbR{}].    uiff(x  =  z;(x  *  y)  =  (z  *  y))  supposing  y  \mneq{}  r0
Date html generated:
2019_10_29-AM-09_40_11
Last ObjectModification:
2019_04_01-PM-07_01_17
Theory : reals
Home
Index