Nuprl Lemma : rmul_preserves_req

[x,y,z:ℝ].  uiff(x z;(x y) (z y)) supposing y ≠ r0


Proof




Definitions occuring in Statement :  rneq: x ≠ y req: y rmul: b int-to-real: r(n) real: uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) implies:  Q prop: rdiv: (x/y) all: x:A. B[x] req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top
Lemmas referenced :  req_functionality rmul_wf rmul_functionality req_weakening req_witness req_wf rneq_wf int-to-real_wf real_wf rdiv_wf rinv_wf2 itermSubtract_wf itermMultiply_wf itermVar_wf itermConstant_wf req_transitivity rmul-rinv rmul-rinv3 req-iff-rsub-is-0 real_polynomial_null istype-int real_term_value_sub_lemma istype-void real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut independent_pairFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache independent_isectElimination productElimination independent_functionElimination universeIsType sqequalRule independent_pairEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType natural_numberEquality dependent_functionElimination approximateComputation lambdaEquality_alt int_eqEquality voidElimination

Latex:
\mforall{}[x,y,z:\mBbbR{}].    uiff(x  =  z;(x  *  y)  =  (z  *  y))  supposing  y  \mneq{}  r0



Date html generated: 2019_10_29-AM-09_40_11
Last ObjectModification: 2019_04_01-PM-07_01_17

Theory : reals


Home Index