Nuprl Lemma : trivial-rless-radd

a,d:ℝ.  (uiff(a < (a d);r0 < d) ∧ uiff(a < (d a);r0 < d))


Proof




Definitions occuring in Statement :  rless: x < y radd: b int-to-real: r(n) real: uiff: uiff(P;Q) all: x:A. B[x] and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] and: P ∧ Q cand: c∧ B uiff: uiff(P;Q) uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] itermConstant: "const" req_int_terms: t1 ≡ t2 false: False implies:  Q not: ¬A top: Top prop: squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  rless-implies-rless int-to-real_wf radd_wf real_term_polynomial itermSubtract_wf itermAdd_wf itermVar_wf itermConstant_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_add_lemma real_term_value_var_lemma req-iff-rsub-is-0 rsub_wf rless_wf squash_wf true_wf real_wf radd_comm_eq iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut independent_pairFormation isect_memberFormation introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination natural_numberEquality hypothesis hypothesisEquality independent_isectElimination sqequalRule computeAll lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality productElimination applyEquality imageElimination equalityTransitivity equalitySymmetry because_Cache imageMemberEquality baseClosed universeEquality independent_functionElimination

Latex:
\mforall{}a,d:\mBbbR{}.    (uiff(a  <  (a  +  d);r0  <  d)  \mwedge{}  uiff(a  <  (d  +  a);r0  <  d))



Date html generated: 2017_10_03-AM-08_25_50
Last ObjectModification: 2017_07_28-AM-07_23_58

Theory : reals


Home Index