Nuprl Lemma : trivial-rless-radd
∀a,d:ℝ.  (uiff(a < (a + d);r0 < d) ∧ uiff(a < (d + a);r0 < d))
Proof
Definitions occuring in Statement : 
rless: x < y
, 
radd: a + b
, 
int-to-real: r(n)
, 
real: ℝ
, 
uiff: uiff(P;Q)
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
rless-implies-rless, 
int-to-real_wf, 
radd_wf, 
real_term_polynomial, 
itermSubtract_wf, 
itermAdd_wf, 
itermVar_wf, 
itermConstant_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
rsub_wf, 
rless_wf, 
squash_wf, 
true_wf, 
real_wf, 
radd_comm_eq, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
independent_pairFormation, 
isect_memberFormation, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
independent_isectElimination, 
sqequalRule, 
computeAll, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
productElimination, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_functionElimination
Latex:
\mforall{}a,d:\mBbbR{}.    (uiff(a  <  (a  +  d);r0  <  d)  \mwedge{}  uiff(a  <  (d  +  a);r0  <  d))
Date html generated:
2017_10_03-AM-08_25_50
Last ObjectModification:
2017_07_28-AM-07_23_58
Theory : reals
Home
Index