Nuprl Lemma : rv-norm_functionality

[rv:InnerProductSpace]. ∀[x1,x2:Point].  ||x1|| ||x2|| supposing x1 ≡ x2


Proof




Definitions occuring in Statement :  rv-norm: ||x|| inner-product-space: InnerProductSpace ss-eq: x ≡ y ss-point: Point req: y uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) guard: {T} implies:  Q prop: and: P ∧ Q subtype_rel: A ⊆B rv-norm: ||x|| uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rv-ip_functionality rsqrt_functionality req_functionality req_weakening rv-ip-nonneg rsqrt_wf ss-point_wf separation-space_wf real-vector-space_wf inner-product-space_wf subtype_rel_transitivity inner-product-space_subtype real-vector-space_subtype1 ss-eq_wf rv-ip_wf rmul_wf req_wf int-to-real_wf rleq_wf real_wf rv-norm_wf req_witness
Rules used in proof :  productElimination dependent_set_memberEquality equalitySymmetry equalityTransitivity because_Cache isect_memberEquality independent_isectElimination instantiate independent_functionElimination sqequalRule natural_numberEquality productEquality setEquality rename setElimination lambdaEquality applyEquality hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[x1,x2:Point].    ||x1||  =  ||x2||  supposing  x1  \mequiv{}  x2



Date html generated: 2016_11_08-AM-09_16_07
Last ObjectModification: 2016_10_31-PM-04_44_40

Theory : inner!product!spaces


Home Index