Nuprl Lemma : rv-norm_functionality
∀[rv:InnerProductSpace]. ∀[x1,x2:Point].  ||x1|| = ||x2|| supposing x1 ≡ x2
Proof
Definitions occuring in Statement : 
rv-norm: ||x||
, 
inner-product-space: InnerProductSpace
, 
ss-eq: x ≡ y
, 
ss-point: Point
, 
req: x = y
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
rev_uimplies: rev_uimplies(P;Q)
, 
uiff: uiff(P;Q)
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
rv-norm: ||x||
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rv-ip_functionality, 
rsqrt_functionality, 
req_functionality, 
req_weakening, 
rv-ip-nonneg, 
rsqrt_wf, 
ss-point_wf, 
separation-space_wf, 
real-vector-space_wf, 
inner-product-space_wf, 
subtype_rel_transitivity, 
inner-product-space_subtype, 
real-vector-space_subtype1, 
ss-eq_wf, 
rv-ip_wf, 
rmul_wf, 
req_wf, 
int-to-real_wf, 
rleq_wf, 
real_wf, 
rv-norm_wf, 
req_witness
Rules used in proof : 
productElimination, 
dependent_set_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
because_Cache, 
isect_memberEquality, 
independent_isectElimination, 
instantiate, 
independent_functionElimination, 
sqequalRule, 
natural_numberEquality, 
productEquality, 
setEquality, 
rename, 
setElimination, 
lambdaEquality, 
applyEquality, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[x1,x2:Point].    ||x1||  =  ||x2||  supposing  x1  \mequiv{}  x2
Date html generated:
2016_11_08-AM-09_16_07
Last ObjectModification:
2016_10_31-PM-04_44_40
Theory : inner!product!spaces
Home
Index