Nuprl Lemma : rsqrt_functionality
∀[x:{x:ℝ| r0 ≤ x} ]. ∀[y:ℝ].  rsqrt(x) = rsqrt(y) supposing x = y
Proof
Definitions occuring in Statement : 
rsqrt: rsqrt(x)
, 
rleq: x ≤ y
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
rsqrt: rsqrt(x)
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
prop: ℙ
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
int_upper: {i...}
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
rsqrt_wf, 
real_wf, 
and_wf, 
rleq_wf, 
int-to-real_wf, 
req_wf, 
rmul_wf, 
rleq_transitivity, 
rleq_weakening, 
set_wf, 
rroot_wf, 
false_wf, 
le_wf, 
subtype_rel_sets, 
assert_wf, 
isEven_wf, 
req_weakening, 
req_functionality, 
rroot_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
natural_numberEquality, 
sqequalRule, 
dependent_set_memberEquality, 
independent_isectElimination, 
because_Cache, 
independent_functionElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairFormation, 
lambdaFormation, 
functionEquality, 
productElimination
Latex:
\mforall{}[x:\{x:\mBbbR{}|  r0  \mleq{}  x\}  ].  \mforall{}[y:\mBbbR{}].    rsqrt(x)  =  rsqrt(y)  supposing  x  =  y
Date html generated:
2016_05_18-AM-09_43_07
Last ObjectModification:
2015_12_27-PM-11_16_07
Theory : reals
Home
Index