Nuprl Lemma : rsqrt_functionality

[x:{x:ℝr0 ≤ x} ]. ∀[y:ℝ].  rsqrt(x) rsqrt(y) supposing y


Proof




Definitions occuring in Statement :  rsqrt: rsqrt(x) rleq: x ≤ y req: y int-to-real: r(n) real: uimplies: supposing a uall: [x:A]. B[x] set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a rsqrt: rsqrt(x) subtype_rel: A ⊆B and: P ∧ Q prop: guard: {T} implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] int_upper: {i...} le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A all: x:A. B[x] uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_witness rsqrt_wf real_wf and_wf rleq_wf int-to-real_wf req_wf rmul_wf rleq_transitivity rleq_weakening set_wf rroot_wf false_wf le_wf subtype_rel_sets assert_wf isEven_wf req_weakening req_functionality rroot_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality lambdaEquality setElimination rename setEquality natural_numberEquality sqequalRule dependent_set_memberEquality independent_isectElimination because_Cache independent_functionElimination isect_memberEquality equalityTransitivity equalitySymmetry independent_pairFormation lambdaFormation functionEquality productElimination

Latex:
\mforall{}[x:\{x:\mBbbR{}|  r0  \mleq{}  x\}  ].  \mforall{}[y:\mBbbR{}].    rsqrt(x)  =  rsqrt(y)  supposing  x  =  y



Date html generated: 2016_05_18-AM-09_43_07
Last ObjectModification: 2015_12_27-PM-11_16_07

Theory : reals


Home Index