Nuprl Lemma : rroot_functionality

[i:{2...}]. ∀[x:{x:ℝ(↑isEven(i))  (r0 ≤ x)} ]. ∀[y:ℝ].  rroot(i;x) rroot(i;y) supposing y


Proof




Definitions occuring in Statement :  rroot: rroot(i;x) rleq: x ≤ y req: y int-to-real: r(n) real: isEven: isEven(n) int_upper: {i...} assert: b uimplies: supposing a uall: [x:A]. B[x] implies:  Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a implies:  Q sq_stable: SqStable(P) guard: {T} squash: T prop: int_upper: {i...} so_lambda: λ2x.t[x] and: P ∧ Q subtype_rel: A ⊆B nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A so_apply: x[s] all: x:A. B[x] uiff: uiff(P;Q) or: P ∨ Q nat_plus: + decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q top: Top true: True
Lemmas referenced :  rnexp-req-iff less_than_wf le-add-cancel zero-add add-commutes add_functionality_wrt_le not-lt-2 decidable__lt rnexp-req-iff-odd isOdd_wf assert_of_bor odd-or-even int_upper_wf req_witness equal_wf req_transitivity req_inversion sq_stable__req and_wf le_wf false_wf int_upper_subtype_nat rnexp_wf req_wf rleq_wf real_wf set_wf rroot_wf isEven_wf assert_wf rleq_weakening rleq_transitivity int-to-real_wf sq_stable__rleq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation setElimination thin rename lemma_by_obid sqequalHypSubstitution isectElimination natural_numberEquality hypothesis hypothesisEquality independent_functionElimination independent_isectElimination because_Cache sqequalRule imageMemberEquality baseClosed imageElimination lambdaEquality productEquality functionEquality applyEquality dependent_set_memberEquality independent_pairFormation productElimination equalityTransitivity equalitySymmetry dependent_functionElimination setEquality isect_memberEquality unionElimination voidElimination voidEquality intEquality

Latex:
\mforall{}[i:\{2...\}].  \mforall{}[x:\{x:\mBbbR{}|  (\muparrow{}isEven(i))  {}\mRightarrow{}  (r0  \mleq{}  x)\}  ].  \mforall{}[y:\mBbbR{}].    rroot(i;x)  =  rroot(i;y)  supposing  x  =  y



Date html generated: 2016_05_18-AM-09_42_29
Last ObjectModification: 2016_01_17-AM-02_50_19

Theory : reals


Home Index