Nuprl Lemma : rroot_functionality
∀[i:{2...}]. ∀[x:{x:ℝ| (↑isEven(i)) ⇒ (r0 ≤ x)} ]. ∀[y:ℝ].  rroot(i;x) = rroot(i;y) supposing x = y
Proof
Definitions occuring in Statement : 
rroot: rroot(i;x), 
rleq: x ≤ y, 
req: x = y, 
int-to-real: r(n), 
real: ℝ, 
isEven: isEven(n), 
int_upper: {i...}, 
assert: ↑b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
implies: P ⇒ Q, 
sq_stable: SqStable(P), 
guard: {T}, 
squash: ↓T, 
prop: ℙ, 
int_upper: {i...}, 
so_lambda: λ2x.t[x], 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
so_apply: x[s], 
all: ∀x:A. B[x], 
uiff: uiff(P;Q), 
or: P ∨ Q, 
nat_plus: ℕ+, 
decidable: Dec(P), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
top: Top, 
true: True
Lemmas referenced : 
rnexp-req-iff, 
less_than_wf, 
le-add-cancel, 
zero-add, 
add-commutes, 
add_functionality_wrt_le, 
not-lt-2, 
decidable__lt, 
rnexp-req-iff-odd, 
isOdd_wf, 
assert_of_bor, 
odd-or-even, 
int_upper_wf, 
req_witness, 
equal_wf, 
req_transitivity, 
req_inversion, 
sq_stable__req, 
and_wf, 
le_wf, 
false_wf, 
int_upper_subtype_nat, 
rnexp_wf, 
req_wf, 
rleq_wf, 
real_wf, 
set_wf, 
rroot_wf, 
isEven_wf, 
assert_wf, 
rleq_weakening, 
rleq_transitivity, 
int-to-real_wf, 
sq_stable__rleq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
setElimination, 
thin, 
rename, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
independent_functionElimination, 
independent_isectElimination, 
because_Cache, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
lambdaEquality, 
productEquality, 
functionEquality, 
applyEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
setEquality, 
isect_memberEquality, 
unionElimination, 
voidElimination, 
voidEquality, 
intEquality
Latex:
\mforall{}[i:\{2...\}].  \mforall{}[x:\{x:\mBbbR{}|  (\muparrow{}isEven(i))  {}\mRightarrow{}  (r0  \mleq{}  x)\}  ].  \mforall{}[y:\mBbbR{}].    rroot(i;x)  =  rroot(i;y)  supposing  x  =  y
Date html generated:
2016_05_18-AM-09_42_29
Last ObjectModification:
2016_01_17-AM-02_50_19
Theory : reals
Home
Index