Nuprl Lemma : odd-or-even
∀n:ℤ. (↑(isOdd(n) ∨bisEven(n)))
Proof
Definitions occuring in Statement : 
isEven: isEven(n)
, 
isOdd: isOdd(n)
, 
bor: p ∨bq
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uimplies: b supposing a
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
prop: ℙ
, 
isEven: isEven(n)
, 
isOdd: isOdd(n)
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
Lemmas referenced : 
or_wf, 
eq_int_wf, 
assert_wf, 
assert_of_eq_int, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_or_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
intformor_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__equal_int, 
int_subtype_base, 
equal-wf-base, 
decidable__or, 
less_than_wf, 
mod_bounds, 
isEven_wf, 
isOdd_wf, 
assert_of_bor
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
introduction, 
imageMemberEquality, 
baseClosed, 
intEquality, 
baseApply, 
closedConclusion, 
applyEquality, 
because_Cache, 
independent_functionElimination, 
unionElimination, 
imageElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
addLevel, 
orFunctionality
Latex:
\mforall{}n:\mBbbZ{}.  (\muparrow{}(isOdd(n)  \mvee{}\msubb{}isEven(n)))
Date html generated:
2016_05_14-PM-04_23_53
Last ObjectModification:
2016_01_14-PM-11_37_58
Theory : num_thy_1
Home
Index