Nuprl Lemma : odd-or-even

n:ℤ(↑(isOdd(n) ∨bisEven(n)))


Proof




Definitions occuring in Statement :  isEven: isEven(n) isOdd: isOdd(n) bor: p ∨bq assert: b all: x:A. B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) uimplies: supposing a nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True prop: isEven: isEven(n) isOdd: isOdd(n) subtype_rel: A ⊆B implies:  Q le: A ≤ B decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top
Lemmas referenced :  or_wf eq_int_wf assert_wf assert_of_eq_int int_formula_prop_wf int_formula_prop_le_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_or_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformle_wf intformless_wf itermConstant_wf itermVar_wf intformeq_wf intformor_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__equal_int int_subtype_base equal-wf-base decidable__or less_than_wf mod_bounds isEven_wf isOdd_wf assert_of_bor
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality hypothesis productElimination independent_isectElimination dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation introduction imageMemberEquality baseClosed intEquality baseApply closedConclusion applyEquality because_Cache independent_functionElimination unionElimination imageElimination dependent_pairFormation lambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality computeAll addLevel orFunctionality

Latex:
\mforall{}n:\mBbbZ{}.  (\muparrow{}(isOdd(n)  \mvee{}\msubb{}isEven(n)))



Date html generated: 2016_05_14-PM-04_23_53
Last ObjectModification: 2016_01_14-PM-11_37_58

Theory : num_thy_1


Home Index