Nuprl Lemma : mod_bounds
∀[a:ℤ]. ∀[n:ℕ+].  ((0 ≤ (a mod n)) ∧ a mod n < n)
Proof
Definitions occuring in Statement : 
modulus: a mod n
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
and: P ∧ Q
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
int_nzero: ℤ-o
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
false: False
, 
guard: {T}
, 
and: P ∧ Q
, 
squash: ↓T
, 
le: A ≤ B
, 
true: True
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
nat_plus_wf, 
iff_weakening_equal, 
nat_plus_subtype_nat, 
absval_pos, 
true_wf, 
squash_wf, 
equal_wf, 
less_than_irreflexivity, 
le_weakening, 
less_than_transitivity1, 
nequal_wf, 
less_than_wf, 
subtype_rel_sets, 
mod_bounds_1
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
intEquality, 
because_Cache, 
lambdaEquality, 
natural_numberEquality, 
independent_isectElimination, 
setElimination, 
rename, 
setEquality, 
lambdaFormation, 
dependent_functionElimination, 
independent_functionElimination, 
voidElimination, 
independent_pairFormation, 
productElimination, 
promote_hyp, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
universeEquality
Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    ((0  \mleq{}  (a  mod  n))  \mwedge{}  a  mod  n  <  n)
Date html generated:
2016_05_13-PM-03_37_33
Last ObjectModification:
2016_01_14-PM-06_38_58
Theory : arithmetic
Home
Index