Nuprl Lemma : isOdd_wf

[n:ℤ]. (isOdd(n) ∈ 𝔹)


Proof




Definitions occuring in Statement :  isOdd: isOdd(n) bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T isOdd: isOdd(n) int_nzero: -o true: True nequal: a ≠ b ∈  not: ¬A implies:  Q uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] guard: {T} false: False prop: subtype_rel: A ⊆B
Lemmas referenced :  eq_int_wf modulus_wf subtype_base_sq int_subtype_base equal_wf true_wf nequal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_set_memberEquality natural_numberEquality addLevel lambdaFormation instantiate cumulativity intEquality independent_isectElimination hypothesis dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination voidElimination applyEquality because_Cache axiomEquality

Latex:
\mforall{}[n:\mBbbZ{}].  (isOdd(n)  \mmember{}  \mBbbB{})



Date html generated: 2016_05_14-PM-04_23_17
Last ObjectModification: 2015_12_26-PM-08_18_53

Theory : num_thy_1


Home Index