Nuprl Lemma : rnexp_wf
∀[k:ℕ]. ∀[x:ℝ].  (x^k ∈ ℝ)
Proof
Definitions occuring in Statement : 
rnexp: x^k1, 
real: ℝ, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
rnexp: x^k1, 
has-value: (a)↓, 
uimplies: b supposing a, 
nat: ℕ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
sq_type: SQType(T), 
implies: P ⇒ Q, 
guard: {T}, 
eq_int: (i =z j), 
subtract: n - m, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
not: ¬A, 
false: False, 
bfalse: ff, 
exists: ∃x:A. B[x], 
bnot: ¬bb, 
assert: ↑b, 
real: ℝ, 
subtype_rel: A ⊆r B, 
nat_plus: ℕ+, 
int_upper: {i...}, 
prop: ℙ, 
reg-seq-nexp: reg-seq-nexp(x;k), 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
le: A ≤ B, 
less_than': less_than'(a;b), 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
value-type-has-value, 
nat_wf, 
set-value-type, 
le_wf, 
istype-int, 
int-value-type, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
int-to-real_wf, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
int_upper_wf, 
nat_plus_wf, 
absval_wf, 
istype-int_upper, 
canon-bnd_wf, 
reg-seq-nexp_wf, 
nat_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
istype-less_than, 
accelerate_wf, 
real_wf, 
istype-nat, 
subtract_wf, 
decidable__le, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
istype-le, 
exp_wf4, 
subtype_rel_set, 
upper_subtype_nat, 
istype-false, 
exp_wf_nat_plus, 
nat_plus_properties, 
add_nat_plus, 
multiply_nat_wf, 
add_nat_wf, 
divide_wf, 
add-is-int-iff, 
multiply-is-int-iff, 
itermAdd_wf, 
itermMultiply_wf, 
int_term_value_add_lemma, 
int_term_value_mul_lemma, 
false_wf, 
exp-fastexp
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
callbyvalueReduce, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
independent_isectElimination, 
intEquality, 
lambdaEquality_alt, 
natural_numberEquality, 
hypothesisEquality, 
dependent_functionElimination, 
setElimination, 
rename, 
unionElimination, 
instantiate, 
cumulativity, 
because_Cache, 
independent_functionElimination, 
inhabitedIsType, 
lambdaFormation_alt, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
voidElimination, 
dependent_pairFormation_alt, 
equalityIstype, 
promote_hyp, 
setEquality, 
functionEquality, 
applyEquality, 
multiplyEquality, 
dependent_set_memberEquality_alt, 
approximateComputation, 
int_eqEquality, 
isect_memberEquality_alt, 
independent_pairFormation, 
universeIsType, 
axiomEquality, 
isectIsTypeImplies, 
applyLambdaEquality, 
addEquality, 
divideEquality, 
baseClosed, 
sqequalBase, 
pointwiseFunctionality, 
baseApply, 
closedConclusion
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[x:\mBbbR{}].    (x\^{}k  \mmember{}  \mBbbR{})
Date html generated:
2019_10_29-AM-09_34_02
Last ObjectModification:
2019_01_31-PM-08_16_15
Theory : reals
Home
Index