Nuprl Lemma : divide_wf

[a:ℕ]. ∀[n:ℕ+].  (a ÷ n ∈ ℕ)


Proof




Definitions occuring in Statement :  nat_plus: + nat: uall: [x:A]. B[x] member: t ∈ T divide: n ÷ m
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: nat_plus: + nequal: a ≠ b ∈  ge: i ≥  not: ¬A implies:  Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False all: x:A. B[x] top: Top and: P ∧ Q prop:
Lemmas referenced :  nat_wf nat_plus_wf le_wf div_bounds_1 equal_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformless_wf itermConstant_wf itermVar_wf intformeq_wf intformand_wf satisfiable-full-omega-tt nat_properties nat_plus_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality divideEquality sqequalHypSubstitution setElimination thin rename hypothesisEquality hypothesis lemma_by_obid isectElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll axiomEquality equalityTransitivity equalitySymmetry because_Cache

Latex:
\mforall{}[a:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    (a  \mdiv{}  n  \mmember{}  \mBbbN{})



Date html generated: 2016_05_14-AM-07_23_48
Last ObjectModification: 2016_01_14-PM-10_02_15

Theory : int_2


Home Index