Nuprl Lemma : exp_wf_nat_plus

[n:ℕ]. ∀[v:ℕ+].  (v^n ∈ ℕ+)


Proof




Definitions occuring in Statement :  exp: i^n nat_plus: + nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: exp: i^n nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True decidable: Dec(P) or: P ∨ Q
Lemmas referenced :  nat_wf int_seg_wf mul_nat_plus le_wf nat_plus_properties primrec_wf int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le primrec0_lemma nat_plus_wf less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry dependent_set_memberEquality imageMemberEquality baseClosed unionElimination because_Cache

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[v:\mBbbN{}\msupplus{}].    (v\^{}n  \mmember{}  \mBbbN{}\msupplus{})



Date html generated: 2016_05_14-AM-07_34_33
Last ObjectModification: 2016_01_14-PM-09_54_18

Theory : int_2


Home Index