Nuprl Lemma : exp-fastexp
∀[i:ℤ]. ∀[n:ℕ].  (i^n ~ i^n)
Proof
Definitions occuring in Statement : 
fastexp: i^n
, 
exp: i^n
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
fastexp: i^n
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_exists: ∃x:A [B[x]]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
guard: {T}
Lemmas referenced : 
efficient-exp-ext, 
subtype_rel_self, 
all_wf, 
nat_wf, 
sq_exists_wf, 
equal-wf-base, 
istype-nat, 
istype-int, 
subtype_base_sq, 
int_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
applyEquality, 
thin, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
sqequalHypSubstitution, 
isectElimination, 
functionEquality, 
closedConclusion, 
intEquality, 
Error :lambdaEquality_alt, 
because_Cache, 
Error :inhabitedIsType, 
hypothesisEquality, 
Error :lambdaFormation_alt, 
Error :equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
axiomSqEquality, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
setElimination, 
rename, 
cumulativity, 
independent_isectElimination
Latex:
\mforall{}[i:\mBbbZ{}].  \mforall{}[n:\mBbbN{}].    (i\^{}n  \msim{}  i\^{}n)
Date html generated:
2019_06_20-PM-02_31_50
Last ObjectModification:
2018_11_28-PM-07_12_43
Theory : num_thy_1
Home
Index