Nuprl Lemma : exp-fastexp

[i:ℤ]. ∀[n:ℕ].  (i^n i^n)


Proof




Definitions occuring in Statement :  fastexp: i^n exp: i^n nat: uall: [x:A]. B[x] int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fastexp: i^n subtype_rel: A ⊆B all: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] sq_exists: x:A [B[x]] prop: implies:  Q uimplies: supposing a sq_type: SQType(T) guard: {T}
Lemmas referenced :  efficient-exp-ext subtype_rel_self all_wf nat_wf sq_exists_wf equal-wf-base istype-nat istype-int subtype_base_sq int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut applyEquality thin instantiate extract_by_obid hypothesis sqequalRule sqequalHypSubstitution isectElimination functionEquality closedConclusion intEquality Error :lambdaEquality_alt,  because_Cache Error :inhabitedIsType,  hypothesisEquality Error :lambdaFormation_alt,  Error :equalityIstype,  equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination axiomSqEquality Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  setElimination rename cumulativity independent_isectElimination

Latex:
\mforall{}[i:\mBbbZ{}].  \mforall{}[n:\mBbbN{}].    (i\^{}n  \msim{}  i\^{}n)



Date html generated: 2019_06_20-PM-02_31_50
Last ObjectModification: 2018_11_28-PM-07_12_43

Theory : num_thy_1


Home Index