Nuprl Lemma : efficient-exp-ext

i:ℤ. ∀n:ℕ.  (∃j:ℤ [(j i^n ∈ ℤ)])


Proof




Definitions occuring in Statement :  exp: i^n nat: all: x:A. B[x] sq_exists: x:A [B[x]] int: equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T divide: n ÷ m remainder: rem m so_apply: x[s1;s2] natrec: natrec efficient-exp decidable__equal_int decidable__int_equal uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] top: Top so_apply: x[s] uimplies: supposing a strict4: strict4(F) and: P ∧ Q all: x:A. B[x] implies:  Q has-value: (a)↓ prop: or: P ∨ Q squash: T so_lambda: λ2y.t[x; y]
Lemmas referenced :  efficient-exp lifting-strict-int_eq istype-void strict4-decide lifting-strict-spread has-value_wf_base istype-base is-exception_wf decidable__equal_int decidable__int_equal
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination baseClosed Error :isect_memberEquality_alt,  voidElimination independent_isectElimination independent_pairFormation Error :lambdaFormation_alt,  callbyvalueCallbyvalue callbyvalueReduce Error :universeIsType,  baseApply closedConclusion hypothesisEquality callbyvalueExceptionCases Error :inrFormation_alt,  imageMemberEquality imageElimination exceptionSqequal Error :inlFormation_alt,  Error :inhabitedIsType,  sqequalSqle divergentSqle callbyvalueSpread productElimination sqleReflexivity Error :equalityIstype,  dependent_functionElimination independent_functionElimination spreadExceptionCases axiomSqleEquality

Latex:
\mforall{}i:\mBbbZ{}.  \mforall{}n:\mBbbN{}.    (\mexists{}j:\mBbbZ{}  [(j  =  i\^{}n)])



Date html generated: 2019_06_20-PM-02_31_39
Last ObjectModification: 2019_03_10-PM-02_37_42

Theory : num_thy_1


Home Index