Nuprl Lemma : efficient-exp

i:ℤ. ∀n:ℕ.  (∃j:ℤ [(j i^n ∈ ℤ)])


Proof




Definitions occuring in Statement :  exp: i^n nat: all: x:A. B[x] sq_exists: x:A [B[x]] int: equal: t ∈ T
Definitions unfolded in proof :  iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) lelt: i ≤ j < k nequal: a ≠ b ∈  int_nzero: -o true: True squash: T less_than: a < b less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A ge: i ≥  nat_plus: + top: Top so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] prop: int_seg: {i..j-} subtype_rel: A ⊆B sq_exists: x:A [B[x]] or: P ∨ Q decidable: Dec(P) nat: guard: {T} implies:  Q sq_type: SQType(T) uimplies: supposing a so_apply: x[s] so_lambda: λ2x.t[x] uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x]
Lemmas referenced :  rem_bounds_1 exp_mul iff_weakening_equal exp2 div_rem_sum remainder_wfa add-is-int-iff itermAdd_wf itermMultiply_wf int_term_value_add_lemma int_term_value_mul_lemma false_wf exp_wf2 squash_wf true_wf istype-universe mul_bounds_1a divide_wf exp_add remainder_wf decidable__le nequal_wf divide_wfa int_formula_prop_le_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_and_lemma intformle_wf intformeq_wf itermVar_wf intformand_wf istype-le div_mono1 istype-less_than int_formula_prop_wf int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma itermConstant_wf intformless_wf intformnot_wf full-omega-unsat decidable__lt nat_properties div_bounds_1 istype-void exp0_lemma istype-int subtype_rel_self subtype_rel_function nat_wf le_wf equal-wf-base sq_exists_wf natrec_wf istype-nat lelt_wf set_subtype_base int_seg_wf exp1 decidable__equal_int int_subtype_base subtype_base_sq int-value-type equal_wf set-value-type
Rules used in proof :  addEquality pointwiseFunctionality promote_hyp productElimination hyp_replacement imageElimination universeEquality multiplyEquality Error :productIsType,  imageMemberEquality int_eqEquality independent_pairFormation Error :dependent_pairFormation_alt,  approximateComputation voidElimination Error :isect_memberEquality_alt,  functionEquality functionExtensionality Error :setIsType,  Error :functionIsType,  sqequalBase baseClosed closedConclusion baseApply applyEquality Error :dependent_set_memberFormation_alt,  unionElimination natural_numberEquality because_Cache independent_functionElimination dependent_functionElimination cumulativity instantiate rename setElimination independent_isectElimination Error :universeIsType,  Error :lambdaEquality_alt,  sqequalRule equalitySymmetry equalityTransitivity thin isectElimination sqequalHypSubstitution extract_by_obid hypothesis Error :inhabitedIsType,  Error :equalityIstype,  Error :dependent_set_memberEquality_alt,  introduction cutEval hypothesisEquality intEquality cut Error :lambdaFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}i:\mBbbZ{}.  \mforall{}n:\mBbbN{}.    (\mexists{}j:\mBbbZ{}  [(j  =  i\^{}n)])



Date html generated: 2019_06_20-PM-02_31_24
Last ObjectModification: 2019_06_19-PM-02_36_13

Theory : num_thy_1


Home Index