Nuprl Lemma : efficient-exp
∀i:ℤ. ∀n:ℕ.  (∃j:ℤ [(j = i^n ∈ ℤ)])
Proof
Definitions occuring in Statement : 
exp: i^n
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
lelt: i ≤ j < k
, 
nequal: a ≠ b ∈ T 
, 
int_nzero: ℤ-o
, 
true: True
, 
squash: ↓T
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
ge: i ≥ j 
, 
nat_plus: ℕ+
, 
top: Top
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
prop: ℙ
, 
int_seg: {i..j-}
, 
subtype_rel: A ⊆r B
, 
sq_exists: ∃x:A [B[x]]
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
nat: ℕ
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
sq_type: SQType(T)
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
rem_bounds_1, 
exp_mul, 
iff_weakening_equal, 
exp2, 
div_rem_sum, 
remainder_wfa, 
add-is-int-iff, 
itermAdd_wf, 
itermMultiply_wf, 
int_term_value_add_lemma, 
int_term_value_mul_lemma, 
false_wf, 
exp_wf2, 
squash_wf, 
true_wf, 
istype-universe, 
mul_bounds_1a, 
divide_wf, 
exp_add, 
remainder_wf, 
decidable__le, 
nequal_wf, 
divide_wfa, 
int_formula_prop_le_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
intformeq_wf, 
itermVar_wf, 
intformand_wf, 
istype-le, 
div_mono1, 
istype-less_than, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
full-omega-unsat, 
decidable__lt, 
nat_properties, 
div_bounds_1, 
istype-void, 
exp0_lemma, 
istype-int, 
subtype_rel_self, 
subtype_rel_function, 
nat_wf, 
le_wf, 
equal-wf-base, 
sq_exists_wf, 
natrec_wf, 
istype-nat, 
lelt_wf, 
set_subtype_base, 
int_seg_wf, 
exp1, 
decidable__equal_int, 
int_subtype_base, 
subtype_base_sq, 
int-value-type, 
equal_wf, 
set-value-type
Rules used in proof : 
addEquality, 
pointwiseFunctionality, 
promote_hyp, 
productElimination, 
hyp_replacement, 
imageElimination, 
universeEquality, 
multiplyEquality, 
Error :productIsType, 
imageMemberEquality, 
int_eqEquality, 
independent_pairFormation, 
Error :dependent_pairFormation_alt, 
approximateComputation, 
voidElimination, 
Error :isect_memberEquality_alt, 
functionEquality, 
functionExtensionality, 
Error :setIsType, 
Error :functionIsType, 
sqequalBase, 
baseClosed, 
closedConclusion, 
baseApply, 
applyEquality, 
Error :dependent_set_memberFormation_alt, 
unionElimination, 
natural_numberEquality, 
because_Cache, 
independent_functionElimination, 
dependent_functionElimination, 
cumulativity, 
instantiate, 
rename, 
setElimination, 
independent_isectElimination, 
Error :universeIsType, 
Error :lambdaEquality_alt, 
sqequalRule, 
equalitySymmetry, 
equalityTransitivity, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
hypothesis, 
Error :inhabitedIsType, 
Error :equalityIstype, 
Error :dependent_set_memberEquality_alt, 
introduction, 
cutEval, 
hypothesisEquality, 
intEquality, 
cut, 
Error :lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}i:\mBbbZ{}.  \mforall{}n:\mBbbN{}.    (\mexists{}j:\mBbbZ{}  [(j  =  i\^{}n)])
Date html generated:
2019_06_20-PM-02_31_24
Last ObjectModification:
2019_06_19-PM-02_36_13
Theory : num_thy_1
Home
Index