Nuprl Lemma : exp_add

[n,m:ℕ]. ∀[i:ℤ].  (i^n (i^n i^m) ∈ ℤ)


Proof




Definitions occuring in Statement :  exp: i^n nat: uall: [x:A]. B[x] multiply: m add: m int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: decidable: Dec(P) or: P ∨ Q exp: i^n bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b squash: T nequal: a ≠ b ∈  true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf nat_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma exp0_lemma zero-add one-mul exp_wf2 eq_int_wf bool_wf equal-wf-T-base assert_wf intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma bnot_wf not_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int mul-associates squash_wf true_wf le_wf iff_weakening_equal general_arith_equation1 primrec-unroll uiff_transitivity iff_transitivity iff_weakening_uiff assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination axiomEquality because_Cache unionElimination addEquality equalityTransitivity equalitySymmetry baseClosed equalityElimination productElimination promote_hyp instantiate cumulativity applyEquality imageElimination universeEquality multiplyEquality dependent_set_memberEquality imageMemberEquality impliesFunctionality

Latex:
\mforall{}[n,m:\mBbbN{}].  \mforall{}[i:\mBbbZ{}].    (i\^{}n  +  m  =  (i\^{}n  *  i\^{}m))



Date html generated: 2017_04_14-AM-09_22_19
Last ObjectModification: 2017_02_27-PM-03_58_05

Theory : int_2


Home Index