Nuprl Lemma : exp_wf2

[n:ℕ]. ∀[i:ℤ].  (i^n ∈ ℤ)


Proof




Definitions occuring in Statement :  exp: i^n nat: uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  exp: i^n uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt decidable: Dec(P) or: P ∨ Q
Lemmas referenced :  nat_wf eq_int_wf ifthenelse_wf int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le primrec-unroll less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry unionElimination multiplyEquality because_Cache

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[i:\mBbbZ{}].    (i\^{}n  \mmember{}  \mBbbZ{})



Date html generated: 2016_05_14-AM-07_34_22
Last ObjectModification: 2016_01_14-PM-09_53_56

Theory : int_2


Home Index