Nuprl Lemma : remainder_wf
∀[a:ℕ]. ∀[n:ℕ+].  (a rem n ∈ ℕ)
Proof
Definitions occuring in Statement : 
nat_plus: ℕ+
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
remainder: n rem m
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
Lemmas referenced : 
remainder_wfa, 
nat_plus_inc_int_nzero, 
rem_bounds_1, 
istype-le, 
nat_plus_wf, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
Error :dependent_set_memberEquality_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
sqequalRule, 
productElimination, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :universeIsType, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType
Latex:
\mforall{}[a:\mBbbN{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    (a  rem  n  \mmember{}  \mBbbN{})
Date html generated:
2019_06_20-PM-02_12_29
Last ObjectModification:
2019_06_20-PM-02_08_52
Theory : int_2
Home
Index