Nuprl Lemma : exp1

[i:ℤ]. (i^1 i ∈ ℤ)


Proof




Definitions occuring in Statement :  exp: i^n uall: [x:A]. B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  exp: i^n all: x:A. B[x] member: t ∈ T top: Top uall: [x:A]. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A prop:
Lemmas referenced :  int_formula_prop_wf int_term_value_constant_lemma int_term_value_var_lemma int_term_value_mul_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermConstant_wf itermVar_wf itermMultiply_wf intformeq_wf intformnot_wf satisfiable-full-omega-tt decidable__equal_int primrec1_lemma
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation because_Cache unionElimination isectElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality hypothesisEquality intEquality computeAll

Latex:
\mforall{}[i:\mBbbZ{}].  (i\^{}1  =  i)



Date html generated: 2016_05_14-AM-07_34_44
Last ObjectModification: 2016_01_14-PM-09_54_05

Theory : int_2


Home Index