Nuprl Lemma : sq_stable__req

[x,y:ℝ].  SqStable(x y)


Proof




Definitions occuring in Statement :  req: y real: sq_stable: SqStable(P) uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T sq_stable: SqStable(P) implies:  Q req: y all: x:A. B[x] squash: T real: subtype_rel: A ⊆B prop:
Lemmas referenced :  real_wf req_witness req_wf squash_wf nat_plus_wf subtract_wf absval_wf sq_stable__le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution imageElimination lemma_by_obid isectElimination thin applyEquality setElimination rename hypothesisEquality hypothesis because_Cache sqequalRule natural_numberEquality independent_functionElimination dependent_functionElimination imageMemberEquality baseClosed lambdaEquality isect_memberEquality

Latex:
\mforall{}[x,y:\mBbbR{}].    SqStable(x  =  y)



Date html generated: 2016_05_18-AM-06_50_24
Last ObjectModification: 2016_01_17-AM-01_45_57

Theory : reals


Home Index