Nuprl Lemma : sq_stable__req
∀[x,y:ℝ]. SqStable(x = y)
Proof
Definitions occuring in Statement :
req: x = y
,
real: ℝ
,
sq_stable: SqStable(P)
,
uall: ∀[x:A]. B[x]
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
sq_stable: SqStable(P)
,
implies: P
⇒ Q
,
req: x = y
,
all: ∀x:A. B[x]
,
squash: ↓T
,
real: ℝ
,
subtype_rel: A ⊆r B
,
prop: ℙ
Lemmas referenced :
real_wf,
req_witness,
req_wf,
squash_wf,
nat_plus_wf,
subtract_wf,
absval_wf,
sq_stable__le
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lambdaFormation,
sqequalHypSubstitution,
imageElimination,
lemma_by_obid,
isectElimination,
thin,
applyEquality,
setElimination,
rename,
hypothesisEquality,
hypothesis,
because_Cache,
sqequalRule,
natural_numberEquality,
independent_functionElimination,
dependent_functionElimination,
imageMemberEquality,
baseClosed,
lambdaEquality,
isect_memberEquality
Latex:
\mforall{}[x,y:\mBbbR{}]. SqStable(x = y)
Date html generated:
2016_05_18-AM-06_50_24
Last ObjectModification:
2016_01_17-AM-01_45_57
Theory : reals
Home
Index