Nuprl Lemma : sq_stable__req
∀[x,y:ℝ].  SqStable(x = y)
Proof
Definitions occuring in Statement : 
req: x = y
, 
real: ℝ
, 
sq_stable: SqStable(P)
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
req: x = y
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
real: ℝ
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
Lemmas referenced : 
real_wf, 
req_witness, 
req_wf, 
squash_wf, 
nat_plus_wf, 
subtract_wf, 
absval_wf, 
sq_stable__le
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
imageElimination, 
lemma_by_obid, 
isectElimination, 
thin, 
applyEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
sqequalRule, 
natural_numberEquality, 
independent_functionElimination, 
dependent_functionElimination, 
imageMemberEquality, 
baseClosed, 
lambdaEquality, 
isect_memberEquality
Latex:
\mforall{}[x,y:\mBbbR{}].    SqStable(x  =  y)
Date html generated:
2016_05_18-AM-06_50_24
Last ObjectModification:
2016_01_17-AM-01_45_57
Theory : reals
Home
Index