Nuprl Lemma : ip-dist-between-1
∀[rv:InnerProductSpace]. ∀[t:ℝ]. ∀[a,c:Point].  (||a - t*a + r1 - t*c|| = (|r1 - t| * ||a - c||))
Proof
Definitions occuring in Statement : 
rv-norm: ||x||
, 
rv-sub: x - y
, 
inner-product-space: InnerProductSpace
, 
rv-mul: a*x
, 
rv-add: x + y
, 
rabs: |x|
, 
rsub: x - y
, 
req: x = y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
ss-point: Point
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rv-sub: x - y
, 
all: ∀x:A. B[x]
, 
rv-minus: -x
, 
rsub: x - y
Lemmas referenced : 
req_witness, 
rv-norm_wf, 
rv-sub_wf, 
inner-product-space_subtype, 
rv-add_wf, 
rv-mul_wf, 
rsub_wf, 
int-to-real_wf, 
req_wf, 
rv-ip_wf, 
rmul_wf, 
rabs_wf, 
real_wf, 
rleq_wf, 
ss-point_wf, 
real-vector-space_subtype1, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
rv-norm_functionality, 
ss-eq_wf, 
radd_wf, 
rminus_wf, 
rv-minus_wf, 
req_functionality, 
req_weakening, 
req_inversion, 
rv-norm-mul, 
uiff_transitivity, 
ss-eq_functionality, 
ss-eq_weakening, 
rv-mul-linear, 
rv-add_functionality, 
rv-add-assoc, 
rv-mul-mul, 
rv-mul-1-add, 
rv-mul_functionality, 
radd_functionality, 
rminus-as-rmul, 
req_transitivity, 
rmul_functionality, 
rminus-radd, 
radd_comm, 
rmul-int, 
rminus-rminus, 
rmul-minus, 
rmul_over_rminus, 
rminus_functionality, 
rmul-distrib, 
rmul-one-both
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
because_Cache, 
natural_numberEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
productEquality, 
independent_functionElimination, 
instantiate, 
independent_isectElimination, 
isect_memberEquality, 
minusEquality, 
multiplyEquality, 
productElimination, 
dependent_functionElimination
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[t:\mBbbR{}].  \mforall{}[a,c:Point].    (||a  -  t*a  +  r1  -  t*c||  =  (|r1  -  t|  *  ||a  -  c||))
Date html generated:
2017_10_05-AM-00_01_26
Last ObjectModification:
2017_03_11-PM-05_59_17
Theory : inner!product!spaces
Home
Index