Nuprl Lemma : rv-mul-1-add
∀[rv:RealVectorSpace]. ∀[b:ℝ]. ∀[x:Point]. x + b*x ≡ r1 + b*x
Proof
Definitions occuring in Statement :
rv-mul: a*x
,
rv-add: x + y
,
real-vector-space: RealVectorSpace
,
radd: a + b
,
int-to-real: r(n)
,
real: ℝ
,
ss-eq: x ≡ y
,
ss-point: Point
,
uall: ∀[x:A]. B[x]
,
natural_number: $n
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
ss-eq: x ≡ y
,
not: ¬A
,
implies: P
⇒ Q
,
false: False
,
subtype_rel: A ⊆r B
,
prop: ℙ
,
all: ∀x:A. B[x]
,
uimplies: b supposing a
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :
ss-sep_wf,
real-vector-space_subtype1,
rv-add_wf,
rv-mul_wf,
radd_wf,
int-to-real_wf,
ss-point_wf,
real_wf,
real-vector-space_wf,
ss-eq_weakening,
ss-eq_functionality,
ss-eq_transitivity,
ss-eq_inversion,
rv-mul-add,
rv-add_functionality,
rv-mul1
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
sqequalHypSubstitution,
lambdaEquality,
dependent_functionElimination,
thin,
hypothesisEquality,
because_Cache,
extract_by_obid,
isectElimination,
applyEquality,
hypothesis,
natural_numberEquality,
isect_memberEquality,
voidElimination,
independent_functionElimination,
independent_isectElimination,
productElimination
Latex:
\mforall{}[rv:RealVectorSpace]. \mforall{}[b:\mBbbR{}]. \mforall{}[x:Point]. x + b*x \mequiv{} r1 + b*x
Date html generated:
2017_10_04-PM-11_50_31
Last ObjectModification:
2017_06_22-PM-06_44_32
Theory : inner!product!spaces
Home
Index