Nuprl Lemma : rv-norm-mul
∀[rv:InnerProductSpace]. ∀[x:Point]. ∀[a:ℝ].  (||a*x|| = (|a| * ||x||))
Proof
Definitions occuring in Statement : 
rv-norm: ||x||
, 
inner-product-space: InnerProductSpace
, 
rv-mul: a*x
, 
ss-point: Point
, 
rabs: |x|
, 
req: x = y
, 
rmul: a * b
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
rev_uimplies: rev_uimplies(P;Q)
, 
uiff: uiff(P;Q)
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
nat: ℕ
, 
guard: {T}
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rabs-of-nonneg, 
rmul_comm, 
square-nonneg, 
rnexp2, 
rabs_functionality, 
rabs-rnexp, 
req_inversion, 
rmul-assoc, 
rnexp-rmul, 
rv-ip-mul2, 
req_weakening, 
rmul_functionality, 
rv-ip-mul, 
rv-norm-squared, 
req_transitivity, 
req_functionality, 
uiff_transitivity, 
rv-ip-symmetry, 
le_wf, 
false_wf, 
rnexp_wf, 
separation-space_wf, 
real-vector-space_wf, 
inner-product-space_wf, 
subtype_rel_transitivity, 
real-vector-space_subtype1, 
ss-point_wf, 
inner-product-space_subtype, 
req_witness, 
zero-rleq-rabs, 
rmul-nonneg-case1, 
rv-norm-nonneg, 
rabs_wf, 
rv-ip_wf, 
rmul_wf, 
req_wf, 
int-to-real_wf, 
rleq_wf, 
real_wf, 
rv-mul_wf, 
rv-norm_wf, 
square-req-iff
Rules used in proof : 
lambdaFormation, 
dependent_set_memberEquality, 
instantiate, 
isect_memberEquality, 
productElimination, 
independent_pairFormation, 
independent_isectElimination, 
independent_functionElimination, 
natural_numberEquality, 
productEquality, 
setEquality, 
rename, 
setElimination, 
lambdaEquality, 
sqequalRule, 
hypothesis, 
because_Cache, 
applyEquality, 
hypothesisEquality, 
isectElimination, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[x:Point].  \mforall{}[a:\mBbbR{}].    (||a*x||  =  (|a|  *  ||x||))
Date html generated:
2016_11_08-AM-09_16_46
Last ObjectModification:
2016_11_01-AM-00_42_41
Theory : inner!product!spaces
Home
Index