Nuprl Lemma : rv-norm-mul

[rv:InnerProductSpace]. ∀[x:Point]. ∀[a:ℝ].  (||a*x|| (|a| ||x||))


Proof




Definitions occuring in Statement :  rv-norm: ||x|| inner-product-space: InnerProductSpace rv-mul: a*x ss-point: Point rabs: |x| req: y rmul: b real: uall: [x:A]. B[x]
Definitions unfolded in proof :  rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B nat: guard: {T} rev_implies:  Q iff: ⇐⇒ Q uimplies: supposing a implies:  Q prop: and: P ∧ Q subtype_rel: A ⊆B all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rabs-of-nonneg rmul_comm square-nonneg rnexp2 rabs_functionality rabs-rnexp req_inversion rmul-assoc rnexp-rmul rv-ip-mul2 req_weakening rmul_functionality rv-ip-mul rv-norm-squared req_transitivity req_functionality uiff_transitivity rv-ip-symmetry le_wf false_wf rnexp_wf separation-space_wf real-vector-space_wf inner-product-space_wf subtype_rel_transitivity real-vector-space_subtype1 ss-point_wf inner-product-space_subtype req_witness zero-rleq-rabs rmul-nonneg-case1 rv-norm-nonneg rabs_wf rv-ip_wf rmul_wf req_wf int-to-real_wf rleq_wf real_wf rv-mul_wf rv-norm_wf square-req-iff
Rules used in proof :  lambdaFormation dependent_set_memberEquality instantiate isect_memberEquality productElimination independent_pairFormation independent_isectElimination independent_functionElimination natural_numberEquality productEquality setEquality rename setElimination lambdaEquality sqequalRule hypothesis because_Cache applyEquality hypothesisEquality isectElimination thin dependent_functionElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[x:Point].  \mforall{}[a:\mBbbR{}].    (||a*x||  =  (|a|  *  ||x||))



Date html generated: 2016_11_08-AM-09_16_46
Last ObjectModification: 2016_11_01-AM-00_42_41

Theory : inner!product!spaces


Home Index