Nuprl Lemma : rv-ip-mul2
∀[rv:InnerProductSpace]. ∀[a:ℝ]. ∀[x,y:Point(rv)].  (y ⋅ a*x = (a * y ⋅ x))
Proof
Definitions occuring in Statement : 
rv-ip: x ⋅ y
, 
inner-product-space: InnerProductSpace
, 
rv-mul: a*x
, 
req: x = y
, 
rmul: a * b
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_witness, 
rv-ip_wf, 
rv-mul_wf, 
inner-product-space_subtype, 
rmul_wf, 
Error :ss-point_wf, 
real-vector-space_subtype1, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
Error :separation-space_wf, 
real_wf, 
rv-ip-mul, 
req_functionality, 
rv-ip-symmetry, 
rmul_functionality, 
req_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
independent_functionElimination, 
inhabitedIsType, 
isect_memberEquality_alt, 
because_Cache, 
isectIsTypeImplies, 
universeIsType, 
instantiate, 
independent_isectElimination, 
productElimination
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[a:\mBbbR{}].  \mforall{}[x,y:Point(rv)].    (y  \mcdot{}  a*x  =  (a  *  y  \mcdot{}  x))
Date html generated:
2020_05_20-PM-01_11_02
Last ObjectModification:
2019_12_09-PM-11_53_21
Theory : inner!product!spaces
Home
Index