Nuprl Lemma : rv-ip-mul2

[rv:InnerProductSpace]. ∀[a:ℝ]. ∀[x,y:Point(rv)].  (y ⋅ a*x (a y ⋅ x))


Proof




Definitions occuring in Statement :  rv-ip: x ⋅ y inner-product-space: InnerProductSpace rv-mul: a*x req: y rmul: b real: uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B implies:  Q guard: {T} uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_witness rv-ip_wf rv-mul_wf inner-product-space_subtype rmul_wf Error :ss-point_wf,  real-vector-space_subtype1 subtype_rel_transitivity inner-product-space_wf real-vector-space_wf Error :separation-space_wf,  real_wf rv-ip-mul req_functionality rv-ip-symmetry rmul_functionality req_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis sqequalRule independent_functionElimination inhabitedIsType isect_memberEquality_alt because_Cache isectIsTypeImplies universeIsType instantiate independent_isectElimination productElimination

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[a:\mBbbR{}].  \mforall{}[x,y:Point(rv)].    (y  \mcdot{}  a*x  =  (a  *  y  \mcdot{}  x))



Date html generated: 2020_05_20-PM-01_11_02
Last ObjectModification: 2019_12_09-PM-11_53_21

Theory : inner!product!spaces


Home Index