Nuprl Lemma : rnexp2
∀[x:ℝ]. (x^2 = (x * x))
Proof
Definitions occuring in Statement :
rnexp: x^k1
,
req: x = y
,
rmul: a * b
,
real: ℝ
,
uall: ∀[x:A]. B[x]
,
natural_number: $n
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
nat: ℕ
,
le: A ≤ B
,
and: P ∧ Q
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
,
implies: P
⇒ Q
,
prop: ℙ
,
all: ∀x:A. B[x]
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
uiff: uiff(P;Q)
,
uimplies: b supposing a
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
or: P ∨ Q
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
,
subtract: n - m
,
eq_int: (i =z j)
,
nequal: a ≠ b ∈ T
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
top: Top
,
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :
req_witness,
rnexp_wf,
false_wf,
le_wf,
rmul_wf,
real_wf,
eq_int_wf,
bool_wf,
eqtt_to_assert,
assert_of_eq_int,
int-to-real_wf,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_int,
subtract_wf,
satisfiable-full-omega-tt,
intformnot_wf,
intformeq_wf,
itermConstant_wf,
int_formula_prop_not_lemma,
int_formula_prop_eq_lemma,
int_term_value_constant_lemma,
int_formula_prop_wf,
rmul_comm,
req_functionality,
rnexp_unroll,
req_weakening,
rmul_functionality
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
dependent_set_memberEquality,
natural_numberEquality,
sqequalRule,
independent_pairFormation,
lambdaFormation,
hypothesis,
hypothesisEquality,
independent_functionElimination,
unionElimination,
equalityElimination,
productElimination,
independent_isectElimination,
because_Cache,
equalityTransitivity,
equalitySymmetry,
dependent_pairFormation,
promote_hyp,
dependent_functionElimination,
instantiate,
cumulativity,
voidElimination,
lambdaEquality,
intEquality,
isect_memberEquality,
voidEquality,
computeAll
Latex:
\mforall{}[x:\mBbbR{}]. (x\^{}2 = (x * x))
Date html generated:
2017_10_03-AM-08_32_13
Last ObjectModification:
2017_07_28-AM-07_27_34
Theory : reals
Home
Index