Nuprl Lemma : rnexp_unroll

[x:ℝ]. ∀[n:ℕ].  (x^n if (n =z 0) then r1 if (n =z 1) then else x^n fi )


Proof




Definitions occuring in Statement :  rnexp: x^k1 req: y rmul: b int-to-real: r(n) real: nat: ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] subtract: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False le: A ≤ B less_than': less_than'(a;b) not: ¬A ge: i ≥  int_upper: {i...} decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top rev_uimplies: rev_uimplies(P;Q) subtract: m
Lemmas referenced :  req_witness rnexp_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int int-to-real_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_upper_subtype_nat false_wf le_wf nat_properties nequal-le-implies zero-add int_upper_subtype_int_upper int_upper_properties rmul_wf subtract_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_wf nat_wf real_wf req_weakening rmul_comm req_functionality rnexp-req int_subtype_base rnexp_zero_lemma rmul-one
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename because_Cache natural_numberEquality lambdaFormation unionElimination equalityElimination sqequalRule productElimination independent_isectElimination equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination hypothesis_subsumption dependent_set_memberEquality independent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidEquality computeAll

Latex:
\mforall{}[x:\mBbbR{}].  \mforall{}[n:\mBbbN{}].    (x\^{}n  =  if  (n  =\msubz{}  0)  then  r1  if  (n  =\msubz{}  1)  then  x  else  x\^{}n  -  1  *  x  fi  )



Date html generated: 2017_10_03-AM-08_31_35
Last ObjectModification: 2017_07_28-AM-07_27_08

Theory : reals


Home Index