Nuprl Lemma : rnexp-req

[k:ℕ]. ∀[x:ℝ].  (x^k if (k =z 0) then r1 else x^k fi )


Proof




Definitions occuring in Statement :  rnexp: x^k1 req: y rmul: b int-to-real: r(n) real: nat: ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] subtract: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  sq_type: SQType(T) guard: {T} rnexp: x^k1 eq_int: (i =z j) subtract: m bfalse: ff exists: x:A. B[x] or: P ∨ Q bnot: ¬bb assert: b false: False le: A ≤ B less_than': less_than'(a;b) not: ¬A ge: i ≥  int_upper: {i...} decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top prop: subtype_rel: A ⊆B real: reg-seq-nexp: reg-seq-nexp(x;k) has-value: (a)↓ so_lambda: λ2x.t[x] so_apply: x[s] nat_plus: + iff: ⇐⇒ Q rev_implies:  Q nequal: a ≠ b ∈  true: True fastexp: i^n efficient-exp-ext less_than: a < b squash: T bdd-diff: bdd-diff(f;g) int-to-real: r(n) reg-seq-mul: reg-seq-mul(x;y) int_nzero: -o absval: |i| respects-equality: respects-equality(S;T) sq_stable: SqStable(P) rev_uimplies: rev_uimplies(P;Q) cand: c∧ B
Lemmas referenced :  eq_int_wf eqtt_to_assert assert_of_eq_int subtype_base_sq int_subtype_base req_weakening int-to-real_wf eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int upper_subtype_nat istype-false nat_properties nequal-le-implies zero-add istype-le req-iff-bdd-diff rnexp_wf int_upper_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rmul_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma req_witness bool_wf real_wf istype-nat reg-seq-mul_wf value-type-has-value int_upper_wf set-value-type le_wf int-value-type intformeq_wf int_formula_prop_eq_lemma nat_plus_wf absval_wf istype-int_upper canon-bnd_wf bdd-diff_functionality bdd-diff_weakening rmul-bdd-diff-reg-seq-mul set_subtype_base decidable__equal_int accelerate_wf fastexp_wf istype-less_than reg-seq-nexp_wf decidable__lt intformless_wf int_formula_prop_less_lemma accelerate-bdd-diff nat_plus_properties exp-fastexp exp0_lemma itermMultiply_wf int_term_value_mul_lemma div-one squash_wf true_wf exp1 subtype_rel_self iff_weakening_equal div-cancel nequal_wf minus-one-mul add-mul-special zero-mul upper_subtype_upper divide_wf exp_wf4 subtype_rel_set nat_wf exp_wf_nat_plus add_nat_plus multiply_nat_wf subtract_nat_wf add_nat_wf itermAdd_wf int_term_value_add_lemma respects-equality-sets regular-int-seq_wf respects-equality-trivial reg-seq-mul_functionality_wrt_bdd-diff bdd-diff_inversion bdd-diff_wf canonical-bound_wf add-is-int-iff false_wf mul_cancel_in_le absval_nat_plus less_than_wf absval_mul left_mul_subtract_distrib left_mul_add_distrib div_rem_sum2 rem_bounds_absval exp_step mul_nzero exp_wf3 add-commutes exp_wf2 add-swap add-associates sq_stable__less_than mul-associates minus-add minus-minus le_functionality le_weakening int-triangle-inequality nat_plus_inc_int_nzero add-zero absval_sym sq_stable__all sq_stable__le le_witness_for_triv mul_preserves_le add_functionality_wrt_le exp-positive mul-swap add_functionality_wrt_eq absval_pos mul-commutes nat_plus_subtype_nat exp-positive-stronger mul-distributes one-mul multiply-is-int-iff multiply_functionality_wrt_le absval_unfold lt_int_wf assert_of_lt_int istype-top iff_weakening_uiff assert_wf efficient-exp-ext
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis natural_numberEquality inhabitedIsType lambdaFormation_alt unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination because_Cache sqequalRule instantiate cumulativity intEquality dependent_functionElimination independent_functionElimination dependent_pairFormation_alt equalityIstype promote_hyp voidElimination hypothesis_subsumption independent_pairFormation dependent_set_memberEquality_alt approximateComputation lambdaEquality_alt int_eqEquality isect_memberEquality_alt universeIsType closedConclusion isectIsTypeImplies applyEquality callbyvalueReduce setEquality functionEquality multiplyEquality addEquality divideEquality baseClosed sqequalBase imageMemberEquality functionIsType imageElimination universeEquality minusEquality applyLambdaEquality setIsType pointwiseFunctionality baseApply remainderEquality functionIsTypeImplies lessCases axiomSqEquality

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[x:\mBbbR{}].    (x\^{}k  =  if  (k  =\msubz{}  0)  then  r1  else  x  *  x\^{}k  -  1  fi  )



Date html generated: 2019_10_29-AM-09_34_33
Last ObjectModification: 2019_01_31-PM-09_59_48

Theory : reals


Home Index