Nuprl Lemma : exp_step

[n:ℕ+]. ∀[i:ℤ].  (i^n i^n 1)


Proof




Definitions occuring in Statement :  exp: i^n nat_plus: + uall: [x:A]. B[x] multiply: m subtract: m natural_number: $n int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: nat_plus: + all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top and: P ∧ Q prop: le: A ≤ B less_than': less_than'(a;b) squash: T subtract: m subtype_rel: A ⊆B guard: {T} true: True iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T)
Lemmas referenced :  exp_add subtract_wf nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf false_wf equal_wf squash_wf true_wf exp_wf2 nat_wf add-associates add-swap add-commutes zero-add le_weakening2 mul-commutes subtract-add-cancel exp1 iff_weakening_equal subtype_base_sq int_subtype_base nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality setElimination rename hypothesisEquality hypothesis natural_numberEquality dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll lambdaFormation because_Cache hyp_replacement equalitySymmetry applyEquality imageElimination equalityTransitivity universeEquality minusEquality imageMemberEquality baseClosed multiplyEquality productElimination independent_functionElimination instantiate cumulativity sqequalAxiom

Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[i:\mBbbZ{}].    (i\^{}n  \msim{}  i  *  i\^{}n  -  1)



Date html generated: 2017_04_14-AM-09_22_24
Last ObjectModification: 2017_02_27-PM-03_57_44

Theory : int_2


Home Index