Nuprl Lemma : div-one

[x:ℤ]. (x ÷ x)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] divide: n ÷ m natural_number: $n int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a int_nzero: -o true: True nequal: a ≠ b ∈  not: ¬A implies:  Q sq_type: SQType(T) all: x:A. B[x] guard: {T} false: False prop: decidable: Dec(P) or: P ∨ Q uiff: uiff(P;Q) and: P ∧ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top
Lemmas referenced :  false_wf int_formula_prop_wf int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermConstant_wf itermMultiply_wf itermAdd_wf itermVar_wf intformeq_wf intformnot_wf intformand_wf satisfiable-full-omega-tt multiply-is-int-iff add-is-int-iff decidable__equal_int rem-one nequal_wf true_wf equal_wf div_rem_sum int_subtype_base subtype_base_sq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination because_Cache independent_isectElimination hypothesis hypothesisEquality dependent_set_memberEquality natural_numberEquality addLevel lambdaFormation cumulativity intEquality dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination voidElimination sqequalRule unionElimination pointwiseFunctionality rename promote_hyp baseApply closedConclusion baseClosed productElimination dependent_pairFormation lambdaEquality int_eqEquality isect_memberEquality voidEquality independent_pairFormation computeAll sqequalAxiom

Latex:
\mforall{}[x:\mBbbZ{}].  (x  \mdiv{}  1  \msim{}  x)



Date html generated: 2016_05_15-PM-06_13_19
Last ObjectModification: 2016_01_16-PM-00_47_45

Theory : general


Home Index