Nuprl Lemma : rem-one

[x:ℤ]. (x rem 0)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] remainder: rem m natural_number: $n int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x]
Lemmas referenced :  rem-1 istype-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis axiomSqEquality

Latex:
\mforall{}[x:\mBbbZ{}].  (x  rem  1  \msim{}  0)



Date html generated: 2020_05_20-AM-08_15_02
Last ObjectModification: 2019_12_31-PM-06_32_06

Theory : general


Home Index