Nuprl Lemma : rem-one
∀[x:ℤ]. (x rem 1 ~ 0)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
remainder: n rem m
, 
natural_number: $n
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
rem-1, 
istype-int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomSqEquality
Latex:
\mforall{}[x:\mBbbZ{}].  (x  rem  1  \msim{}  0)
Date html generated:
2020_05_20-AM-08_15_02
Last ObjectModification:
2019_12_31-PM-06_32_06
Theory : general
Home
Index