Nuprl Lemma : rem-one
∀[x:ℤ]. (x rem 1 ~ 0)
Proof
Definitions occuring in Statement :
uall: ∀[x:A]. B[x]
,
remainder: n rem m
,
natural_number: $n
,
int: ℤ
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
Lemmas referenced :
rem-1,
istype-int
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
hypothesisEquality,
hypothesis,
axiomSqEquality
Latex:
\mforall{}[x:\mBbbZ{}]. (x rem 1 \msim{} 0)
Date html generated:
2020_05_20-AM-08_15_02
Last ObjectModification:
2019_12_31-PM-06_32_06
Theory : general
Home
Index