Nuprl Lemma : rem-1

a:ℤ(a rem 0)


Proof




Definitions occuring in Statement :  all: x:A. B[x] remainder: rem m natural_number: $n int: sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a int_nzero: -o true: True nequal: a ≠ b ∈  not: ¬A implies:  Q sq_type: SQType(T) guard: {T} false: False prop: absval: |i| bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q less_than: a < b less_than': less_than'(a;b) squash: T cand: c∧ B decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B subtract: m bfalse: ff exists: x:A. B[x] bnot: ¬bb ifthenelse: if then else fi  assert: b
Lemmas referenced :  subtype_base_sq int_subtype_base rem_bounds_absval nequal_wf remainder_wfa istype-int absval_unfold lt_int_wf eqtt_to_assert assert_of_lt_int istype-top decidable__int_equal istype-false not-equal-2 less-iff-le add_functionality_wrt_le add-associates add-swap add-zero le-add-cancel condition-implies-le add-commutes minus-add minus-zero le-add-cancel2 istype-less_than eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base iff_transitivity assert_wf bnot_wf not_wf less_than_wf iff_weakening_uiff assert_of_bnot istype-assert istype-void add_functionality_wrt_lt le_reflexive not-lt-2 zero-add minus-minus minus-one-mul minus-one-mul-top two-mul mul-distributes-right one-mul
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination cumulativity intEquality independent_isectElimination hypothesis dependent_functionElimination dependent_set_memberEquality_alt natural_numberEquality equalityTransitivity equalitySymmetry independent_functionElimination voidElimination equalityIstype inhabitedIsType hypothesisEquality baseClosed sqequalBase universeIsType because_Cache sqequalRule minusEquality unionElimination equalityElimination productElimination lessCases isect_memberFormation_alt axiomSqEquality isect_memberEquality_alt isectIsTypeImplies independent_pairFormation Error :memTop,  imageMemberEquality imageElimination addEquality dependent_pairFormation_alt promote_hyp functionIsType multiplyEquality

Latex:
\mforall{}a:\mBbbZ{}.  (a  rem  1  \msim{}  0)



Date html generated: 2020_05_19-PM-09_35_25
Last ObjectModification: 2019_12_26-PM-09_49_43

Theory : arithmetic


Home Index