Nuprl Lemma : respects-equality-sets

[A,T:Type]. ∀[P:T ⟶ ℙ]. ∀[Q:A ⟶ ℙ].  (respects-equality(A;T)  respects-equality({x:A| Q[x]} ;{x:T| P[x]} ))


Proof




Definitions occuring in Statement :  respects-equality: respects-equality(S;T) uall: [x:A]. B[x] prop: so_apply: x[s] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q prop: so_apply: x[s] so_lambda: λ2x.t[x] respects-equality: respects-equality(S;T) all: x:A. B[x] squash: T
Lemmas referenced :  respects-equality-set istype-base respects-equality_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut Error :lambdaFormation_alt,  extract_by_obid sqequalHypSubstitution isectElimination thin setEquality hypothesisEquality sqequalRule applyEquality Error :lambdaEquality_alt,  Error :universeIsType,  independent_functionElimination hypothesis dependent_functionElimination applyLambdaEquality setElimination rename imageMemberEquality baseClosed imageElimination Error :equalityIstype,  Error :setIsType,  because_Cache sqequalBase equalitySymmetry axiomEquality Error :functionIsTypeImplies,  Error :inhabitedIsType,  Error :functionIsType,  universeEquality Error :isect_memberEquality_alt,  Error :isectIsTypeImplies

Latex:
\mforall{}[A,T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[Q:A  {}\mrightarrow{}  \mBbbP{}].    (respects-equality(A;T)  {}\mRightarrow{}  respects-equality(\{x:A|  Q[x]\}  ;\{x\000C:T|  P[x]\}  ))



Date html generated: 2019_06_20-AM-11_13_46
Last ObjectModification: 2018_12_13-PM-00_07_02

Theory : core_2


Home Index